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In the following, we provide additional details and qual-
itative results of our joint 3D pose and focal length estima-
tion approach called Geometric Projection Parameter Con-
sensus (GP2C). In Sec. 1, we give an overview of the evalu-
ated datasets and present details on the evaluation setup. In
Sec. 2, we qualitatively show appearance ambiguities due
to different focal lengths. In Sec. 3, we discuss parameters
and strategies used for training. In Sec. 4, we present qual-
itative examples of our predicted 2D-3D correspondences.
In Sec. 5, we show failure cases of our approach. In Sec. 6,
we provide additional qualitative 3D pose and focal length
estimation results of our approach. Finally, we conduct an
ablation study on joint refinement in Sec. 7.

1. Datasets and Evaluation Setup
We evaluate our proposed approach for joint 3D pose and

focal length estimation in the wild on three challenging real-
world dataset with different object categories: Pix3D [7]
(bed, chair, sofa, table), Comp [9] (car), and Stanford [9]
(car). These datasets provide category-level 3D pose and
focal length annotations and have only been available re-
cently.

Previous datasets were either captured using a single
camera with constant focal length (category-level: KITTI
or instance-level: LineMOD [3], T-LESS [4], YCB [1]),
or lacked focal length annotations (category-level: Pas-
cal3D+ [11], ObjectNet3D [10]). Due to the lack of focal
length annotations, Pascal3D+ and ObjectNet3D are only
meaningful for coarse 3D rotation estimation but not for
fine-grained 3D pose estimation because they assume an al-
most orthographic camera for all images.

As a consequence of this previous lack of datasets, there
is little research on 3D pose and focal length estimation in
the wild [9]. Existing 3D pose estimation methods either
assume the focal length to be given or evaluate on datasets
which were captured using a single camera with constant
focal length. However, in the wild, images are captured
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Figure 1: In the case of unknown intrinsics, the 3D pose
of an object is ambiguous. Our approach finds a geometric
consensus between all projection parameters, which results
in a precise 2D-3D alignment for any initial focal length.
However, a good initial focal length is required to compute
an accurate 3D pose, as illustrated by the visualization of
the object-to-camera distance.

with multiple cameras having different focal lengths and
the focal length is unknown during inference. Moreover,
approaches for instance-level 3D pose estimation cannot be
applied to category-level 3D pose estimation, as they as-
sume that objects encountered during testing have already
been seen during training [8].

The Pix3D dataset provides multiple categories, how-
ever, we only train and evaluate on categories which have
more than 300 non-occluded and non-truncated samples
(bed, chair, sofa, table). Further, we restrict the training
and evaluation to samples marked as non-occluded and non-
truncated, because we do not know which objects parts are
occluded nor the extent of the occlusion, and many objects
are heavily truncated. For each category, we select 50% of
the samples for training and the other 50% for testing. To
the best of our knowledge, we are the first to report results
for 3D pose and focal length estimation on Pix3D.



The Comp and Stanford datasets only provide one cate-
gory (car). Most images show one prominent car which is
non-occluded and non-truncated. The two datasets already
provide a train-test split. Thus, we use all available samples
from Comp and Stanford for training and evaluation.

2. Appearance Ambiguities

In the main paper, we discuss appearance ambiguities
resulting from different focal lengths and show the impor-
tance of the focal length for estimating 3D poses from 2D-
3D correspondences quantitatively. This is also emphasized
by the qualitative example shown in Figure 1. In this exper-
iment, we initialize our geometric optimization with three
different focal lengths (ground truth, predicted, and con-
stant). We use the predicted 3D pose and focal length to
project the ground truth 3D model onto the image and addi-
tionally visualize the object-to-camera distance.

Our geometric optimization finds a consensus between
the individual projection parameters, which results in a pre-
cise 2D-3D alignment for any initial focal length, because
we optimize the reprojection error during inference. How-
ever, the 3D pose of an object is ambiguous in the case of
unknown intrinsics. Thus, a good initial focal length is a
key factor in achieving high accuracy in terms of 3D trans-
lation, as can be seen from the visualization of the object-to-
camera distance in Figure 1. Our predicted focal length is
significantly more accurate than the best possible constant
focal length, i.e., the median of the training dataset.

3. Training Details

For our implementation, we resize and pad images to a
spatial resolution of 512 × 512 maintaining the aspect ra-
tio. In this way, we are able to use a batch size of 6 on
a 12GB GPU. We train our networks for 200 epochs and
employ a staged training strategy for fine-tuning a model
pre-trained on COCO [6]: First, we freeze all pre-trained
weights and only train our focal length and 2D-3D corre-
spondences branches using a learning rate of 1e−3. During
training, we gradually unfreeze all network layers and fi-
nally train the entire model using a learning rate of 1e−4.

We employ different forms of data augmentation com-
monly used in object detection [2]. In this case, some tech-
niques like mirroring or jittering of location, scale, and rota-
tion require adjusting the training target accordingly, while
independent pixel augmentations like additive noise do not.

Balancing individual loss terms is crucial for training
a multi-task network. We weight the focal loss with 0.1,
the 2D-3D correspondences loss with 10.0, and the object
detection loss with 1.0, however, the specific numbers are
highly dependent on the implementation.

4. Qualitative Predictions
Qualitative examples of our predicted 2D-3D correspon-

dences are presented in Figure 3. The predicted correspon-
dences do not contain single extreme outliers, because they
are computed from a low dimensional feature embedding
which tends to produce consistent predictions. If our pre-
diction fails entire regions of 2D-3D correspondences are
corrupt. In such cases, we cannot estimate the pose cor-
rectly, not even with robust methods.

Considering our predicted location fields, we observe
that the overall shape of the object is recovered very ac-
curately. In specific cases, thin object parts and details are
not detected, e.g., the skinny legs of a table as shown in
Figure 3. To address this issue, the spatial resolution of the
predicted location field can be increased. In this work, we
follow the architecture of Mask R-CNN and use a spatial
resolution of 28× 28 [2].

Considering our 3D bounding box corner projections,
we observe that the predicted 2D locations are close to the
ground truth 2D locations. Also, the perspective box-shape
is well recovered and there is a consensus between the indi-
vidual points. The predictions are even accurate for corners
which project outside the image area, as shown in Figure 3.

5. Failure Cases
Figure 4 shows failure cases of our approach using our

two different methods for establishing 2D-3D correspon-
dences (Ours-LF and Ours-BB). Most failure cases relate
to strong truncations, heavy occlusions, or poses which are
far from the poses seen during training. Naturally, the an-
notations are not perfect and some occluded or truncated
samples are marked as non-occluded and non-truncated, or
the 3D pose annotation is incorrect. In some cases, our
approach makes a correct prediction, but this prediction is
considered wrong because of an erroneous ground truth 3D
pose annotation, as shown in Figure 4. Interestingly, there
is a large overlap between the failure cases of both methods,
which indicates that the respective samples are significantly
different from the samples seen during training.

6. Qualitative Results
Figure 2 shows additional qualitative 3D pose and focal

length estimation results for multiple objects in a single im-
age. We predict 3D poses for multiple objects, however, all
evaluated datasets only provide 3D pose annotations for one
instance per image.

7. Ablation Study
Finally, Table 1 presents quantitative results of our ap-

proach with and without joint 3D pose and focal length re-
finement. For this purpose, we compare our initial solu-



Rotation Translation Pose Focal Projection

Method Dataset Class MedErrR AccRπ
6

MedErrt MedErrR,t MedErrf MedErrP AccP0.1·1 ·101 ·101 ·101 ·102

Ours-LF initial Pix3D mean
7.10 87.9% 1.89 1.32 1.73 3.98 84.7%

Ours-LF refined 6.92 88.4% 1.85 1.30 1.72 3.85 85.5%

Ours-BB initial Pix3D mean
7.04 90.1% 1.98 1.33 1.77 3.87 86.8%

Ours-BB refined 6.89 90.8% 1.94 1.30 1.75 3.66 88.0%

Table 1: Ablation study on joint 3D pose and focal length refinement. We compare our initial solution to the final solution
obtained by our joint refinement. Jointly optimizing all parameters results in an improvement across all metrics.

tion obtained by EPnP [5] with our predicted focal length to
the final solution computed by our joint 3D pose and focal
length refinement. Jointly optimizing all parameters results
in an improvement across all metrics. In fact, the initial
solution already outperforms the state-of-the-art by a large
margin.

Our geometric optimization is fast and efficient. In our
implementation, the geometric optimization with joint re-
finement (Stage 2) takes only 5 ms, while the CNN forward
pass (Stage 1) takes 60 ms per image on average.
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Figure 2: Additional qualitative 3D pose and focal length
estimation results for multiple objects in a single image.
We predict 3D poses for multiple objects (green frames),
however, all evaluated datasets only provide 3D pose anno-
tations for one instance per image (red frames).
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Figure 3: Qualitative examples of our predicted 2D-3D cor-
respondences. For each object, we show two forms of 2D-
3D correspondences: the location field (LF) and the pro-
jections of the object’s 3D bounding box corners (BB). For
each example image, the top row shows the ground truth,
the bottom row shows our predictions.
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(a) Failure cases of Ours-LF
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(b) Failure cases of Ours-BB
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(c) Erroneous ground truth annotations

Figure 4: Example failure cases of our approach for (a)
Ours-LF and (b) Ours-BB. Most failure cases relate to
strong truncations, heavy occlusions, or poses which are far
from the poses seen during training. (c) In some cases, our
approach makes a correct prediction, but the ground truth
3D pose annotation is corrupt, e.g., the annotator confused
the back and the front of a car or mislabeled the location
of the object in the image. We highlight samples showing
incorrect predictions or erroneous ground truth annotations
with red frames.


