
7. Supplementary Material

A. Images used in figures

Video used in Figures 1 and 2 by Ambrose Produc-
tions, and Figure 4 by TravelTip. Both [CC BY-SA 3.0
https://creativecommons.org/licenses/by/3.0/legalcode], via
YouTube.

B. Architectural details

In this section we detail the architecture and hyperpa-
rameters of the autoencoder and code-model that we use in
our experiments.

B.1. Autoencoder

As decribed in section 4.2, we design our autoencoder by
extending the (2D) model of [28] to use 3D convolutions.
The exact model is depicted in Figure 9.

B.1.1 Quantization

As explained in Section 4.2, the encoder network out-
puts continuous latent variables z̃ 2 RB⇥T⇥K⇥H/s⇥W/s,
which are then quantized using a learned codebook C =

{c1, . . . , cL}.
Quantization involves computing qz|x 2

RB⇥T⇥K⇥H/s⇥W/s⇥L that defines the probability for
each codebook center i at each position j in z (note that
this is one-hot over the L axis). We assume independence
between all elements of z given x, and we use the codebook
distance to compute qz|x:

q
ij

z|x = q(zj = i|x) = e
�⌧ |z̃j�ci|

P
L

k=1 e
�⌧ |z̃j�ck|

(5)

Where for notational simplicity, we are using a single
index j to index over all (B, T,K,H,W) dimensions of z̃.

Note that as ⌧ ! 1, q(zj = i|x) will put more and
more probability mass on a single (the closest) center and
will eventually be deterministic. This is desirable, as we
want a deterministic encoder. In practice, we use a ⌧ =

10
7 which we observe to always give us one-hot vectors for

32-bit precision floats. In the backward pass, we use the
gradient of a softmax with a ⌧ = 1 for numerical stability.

On the decoder side, the one-hot probabilities qz|x are
embedded using the same codebook C to obtain the scalar
tensor ẑ approximating z̃ that is then decoded to predict x.

B.2. Autoregressive Code-Model

The code model takes as input the one-hot probability
tensor qz|x output by the encoder, and predicts the proba-
bility for each entry j in z in an autoregressive manner:

+

+

ResBlock BResBlock A

Encoder

ReLU

3d Tconv c:128 k:3 s:(1,2,2)

3d batchnorm

!"

ResBlock A

Decoder

3d Tconv c: 64 k:5 s:(1,2,2)

3d batchnorm

3d Tconv c:3 k:5 s:(1,2,2)

3d batchnorm3d conv c:64 k:5 s:(1,2,2)

3d batchnorm

ReLU

3d conv c:128 k:5 s:(1,2,2)

3d batchnorm

ReLU

3d conv c:C k:5 s:(1,2,2)

3d batchnorm

ResBlock B

"

ResBlock A

ResBlock B

ResBlock B

ResBlock B

ResBlock B

+

ReLU

+

ResBlock B

ResBlock B

ResBlock B

ResBlock B

ResBlock B

3d conv c:128 k:3 s:(1,2,2)

3d batchnorm

ReLU

3d conv c:128 k:3 s:(1,2,2)

3d batchnorm

ResBlock A

ResBlock A

ResBlock A

× % × & × ⁄()× ⁄*) # × % × & × ⁄()× ⁄*)

× % × 3 × (×*# × % × 3 × (×*

× % × & × ⁄()× ⁄*)× ,

soft/hard quantize embed

code-
book

-.

× % × & × ⁄()× ⁄*)× ,

/.

0.|"0.|"

Figure 9: Architecture of our autoencoder. Tconv denotes
transposed convolution. For (transposed) convolutional lay-
ers c denotes the number of output channels, k denotes the
kernel size and s denotes the stride. These are either ex-
pressed as (x, y, z) triplets or as a single number that is
used for each dimension. “Same”-padding is used for all
(transposed) convolution layers. qz|x refers to the tensor of
one-hot probabilities q(zj = i|x).

p
ij

z (qz|x) = p(zj = i|z<j) (6)

We use a 4 layer PixelCNN [37] architecture with a ker-
nel size of 5x5 and 8 hidden channels (h = 8). We em-
bed the one-hot probabilities of qz|x using a learnable scalar
embedding. We experimented with using the encoder code-
book as the prior embedding, but we found that it did not
make any difference in performance in practice.

B.2.1 Conditioning

For the frame-conditioned and GRU-conditioned model
(see Figure 3), we inject the conditioning variable into each
of the autoregressive blocks, right before applying the gated
nonlinearity.

This conditioning input is a featuremap, and its number
of channels should match the number of channels in the
ARMBlock. The gated nonlinearity requires two times the
number of hidden channels h. As there is a nonlinearity for
both the horizontal and vertical stack, this would require 4h
channels. Since the filters in PixelCNN are fully connected
along the channel dimension, the required number of output
channels for the conditioning featuremap is (4h)K.

We use a (conventional) convolutional layer to pre-
process the conditioning input and to upsample the number
of channels to match the size of each autoregressive block in
the PixelCNN. The prior architecture is depicted in Figure
10.

B.2.2 Encoder and Code-Model gradients

During training, the code model is updated to minimize the
rate loss Lrate = CE[q(z|x), p(z)]. The rate loss is a sum
over the elementwise cross-entropy between q and p (which
is summed over each class i of the codebook and each ele-
ment j of z).

Lrate = �
X

z

q(z|x) log p(z) (7)

= �
X

ij

q
ij

z|x log p
ij

z (qz|x) =
X

ij

Lij

rate (8)

Note that unlike [28] we do not do any detaching of the
gradient. As a result, the derivative of the rate loss w.r.t. the
encoder parameters ✓q is affected by the code-model in the
following way:

@Lij

rate

@✓q
= �

@q
ij

z|x

@✓q

q
ij

z|x

p
ij

z (qz|x)

@p
ij

z (qz|x)

@q
ij

z|x
+ log p

ij

z (qz|x)

!

(9)

Thus, the encoder is trained not only to minimize the dis-
tortion, but also to minimize the rate (e.g. to predict latents
that are easily predictable by the code-model). This can

Code model

!"#
Softmax

embed c:1

$"#|&'

ARMBlock k:5 c:8 self:no2d conv c:4∗8∗K k:5 s:1

ARMBlock k:5 c:8 self:yes

ARMBlock k:5 c:8 self:yes

ARMBlock k:5 c:L self:yes

+

+

2d conv c: 4∗8∗K k:5 s:1

2d conv c: 4∗8∗K k:5 s:1

2d conv c:4· 4∗L∗K k:5 s:1

ARMBlock

v h

v' h'

c

ARMBlock

) × 1 × , × ⁄. /× ⁄0 /× 1

) × 1 × , × ⁄. /× ⁄0 /× 1

) × 1 × , × ⁄. /× ⁄0 /× 8

) × 1 × , × ⁄. /× ⁄0 /× 1

) × 1 × , × ⁄. /× ⁄0 /× 1) × 1 × , × ⁄. /× ⁄0 /

Figure 10: Architecture of our prior / code-model. ARM-
Block refers to a block in PixelCNN [37] with horizontal
stack h, vertical stack v and conditioning input c (Figure 2
of [37]). c represents the conditioning input that is used in
our frame-conditioned and GRU-conditioned code-model.

also been seen by reversing the paths of the forward arrows
in Figure 2.

C. Evaluation procedure

C.1. Traditional codec baselines

We use FFMPEG1 2.8.15-0 to obtain the performance
for the H.264/AVC and H.265/HEVC baselines. We use the
default settings unless reported otherwise.

C.2. Data preprocessing

We build our evaluation datasets by extracting the png
frames from the raw source videos using FFMPEG. Be-
cause some videos are in yuv colorspace, the conversion
to rgb could in theory lead to some distortion, though this
is imperceptible in practice. We use the same dataloading
pipeline to evaluate our neural networks and the FFMPEG
baselines as to avoid differences in ground-truth data.

C.3. Rate-Distortion

For the FFMPEG baselines, we divide the total filesize
by the total number of pixels to obtain bpp. For our neu-
ral network, we use the rate loss (converted into bpp) as a

1https://ffmpeg.org/

https://ffmpeg.org/

Figure 11: Rate/distortion results on UVG for classi-
cal and learned compression methods. H.264 and H.265
results were obtained with restricted FFMPEG settings
(Group of Pictures set to 12).

Figure 12: Semantic compression. Background is easier
for all models, HEVC, AVC, and non-semantic model,
except for our learned semantic compresison.

proxy for rate. By definition, the rate loss gives the expected
bitrate under adaptive arithmetic coding, and expected bpp
was shown to be highly correlated to actual bpp [27].

We calculate MS-SSIM [39] using our own implementa-
tion which we benchmarked against the implementation in
tensorflow2. We use the same power factors that are initially
proposed in [39].

D. Additional results

D.1. Comparison to other methods

When comparing neural networks to traditional codecs,
it is common practice to evaluate those codecs under restric-
tive settings. For example, group of pictures (GoP) is often
set to a value that is similar to the number of frames used
to evaluate the neural networks [40, 27]. Furthermore, en-
coding preset will be set to fast (which will result in
worse compression performance) [40, 27]. In our evalua-
tion (presented in Figure 6) we instead use the FFMPEG
default values of GoP=25 and preset=medium.

In Figure 11 we compare our end-to-end method to other
learned compression methods and use baseline codecs with
the restrictive setting of GoP=12, which is used in [40, 27].
The figure shows that our model has a better rate-distortion
performance than H.265/HEVC under these restrictive set-
tings for bitrates higher than 1.2 bpp.

D.2. Semantic Compression

The results for semantic compression are reported in
Figure 7a. To avoid clutter, background performance for

2https://www.tensorflow.org/versions/r1.13/api_
docs/python/tf/image/ssim_multiscale

H.264/AVC and H.265/HEVC are omitted there. Figure
12 shows the full results including background performance
for traditional codecs.

D.3. Adaptive Compression

Quantitative rate-distortion performance for adaptive
compression is reported in Figure 7b. In Figure 13 we show
a qualitative sample. Notice the clear block artifacts that can
be observed around the road markings for H.265/HEVC.
For our generic model, we do not observe such articacts,
though we can see that edges are somewhat blurry around
the line markings. In our adapted model, the road markings
are significantly improved.

We note that the expanding perspective motion observed
in road-driving footage is a great example of a predictable
pattern in the data that a neural network could learn to ex-
ploit, while it would be difficult to manually engineer algo-
rithms that use these patterns.

https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/image/ssim_multiscale
https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/image/ssim_multiscale

(a) HEVC/H.265 (0.025 BPP)

(b) Generic model (0.030 BPP)

(c) Adapted model (0.025 BPP)
Figure 13: Qualitative results for adaptive compression.

