
Photo-realistic Monocular Gaze Redirection
Using Generative Adversarial Networks

– Supplementary Material –

Zhe He1, 2, Adrian Spurr1, Xucong Zhang1, Otmar Hilliges1

1AIT Lab, ETH Zürich
2Institute of Neuroinformatics, ETH Zürich & University of Zürich

zhehe@student.ethz.ch, {adrian.spurr, xucong.zhang, otmar.hilliges}@inf.ethz.ch

1. Network Architecture
In this section, we provide the details of network archi-

tecture discussed in Sec. 4.1.

1.1. Abbreviations

Conv(k × k, s, p): A convolutional layer with kernel
size k × k, stride size s and padding size p. Zero padding
is used in all convolutional layers. IN: An instance normal-
ization layer. ReLU: A ReLU activation layer. LReLU:
A Leaky ReLU activation layer. Slope of the activation
function at x < 0 is set to 0.01. Tanh: A tanh activation
layer. DeConv(k × k, s, p): A transposed convolutional
layer with kernel size k × k, stride size s and padding size
p. Zero padding is used in all transposed convolutional lay-
ers. Res(k × k, s, p, IN, ReLU): A residual layer which
builds upon Conv(k × k, s, p), IN and ReLU layers.

1.2. Generator

Layers Output
Conv(7x7, 1, 3)–IN–ReLU (64, 64, 64)
Conv(4x4, 2, 1)–IN–ReLU (32, 32, 128)
Conv(4x4, 2, 1)–IN–ReLU (16, 16, 256)
Res(3x3, 1, 1, IN, ReLU) (16, 16, 256)
Res(3x3, 1, 1, IN, ReLU) (16, 16, 256)
Res(3x3, 1, 1, IN, ReLU) (16, 16, 256)
Res(3x3, 1, 1, IN, ReLU) (16, 16, 256)
Res(3x3, 1, 1, IN, ReLU) (16, 16, 256)
Res(3x3, 1, 1, IN, ReLU) (16, 16, 256)

DeConv(4x4, 2, 1)–IN–ReLU (32, 32, 128)
DeConv(4x4, 2, 1)–IN–ReLU (64, 64, 64)

Conv(7x7, 1, 3)–Tanh (64, 64, 3)

Table 1: Generator Architecture

1.3. Discriminator

Layers Output
Conv(4x4, 2, 1)–LReLU (32, 32, 64)
Conv(4x4, 2, 1)–LReLU (16, 16, 128)
Conv(4x4, 2, 1)–LReLU (8, 8, 256)
Conv(4x4, 2, 1)–LReLU (4, 4, 512)
Conv(4x4, 2, 1)–LReLU (2, 2, 1024)

Table 2: Backbone Network of Discriminator

Layers Output
Backbone (2, 2, 1024)

Conv(2x2, 1, 1) (3, 3, 1)

Table 3: Discriminator Architecture

Layers Output
Backbone (2, 2, 1024)

Conv(2x2, 1, 0) (1, 1, 2)

Table 4: Gaze Estimator Architecture

2. Implementation

Code for training and testing our model is available on-
line (https://github.com/HzDmS/gaze redirection).

3. Training Details of Gaze Estimators

Training details of the gaze estimators used in Sec. 5.6
are provided in this section. We used the Adam optimizer
with learning rate 0.00005, β1 = 0.5, and β2 = 0.999.
Batch size was set to 32. For the training on the raw dataset,
the gaze estimator was trained for 200 epochs. For the
training on the augmented dataset, the gaze estimator was
trained for 100 epochs.

https://github.com/HzDmS/gaze_redirection


4. Results on Non-frontal Faces
We conducted an additional experiment on non-frontal

head poses and compared them with the frontal head pose.
We used the same settings as introduced in Sec. 4.2 and
Sec. 5.2 (in our paper). Samples which could not be suc-
cessfully parsed with dlib [1] were not included in the
training and test datasets. Note this process removed some
samples with extreme head poses.

0�

�15�

�30�

+15�

+30�

+15�0��15�
Gaze Yaw

He
ad

 Y
aw

Input Output

Figure 1: Gaze redirection results on images with different
head poses. In the output images, the gaze pitch is equal to
0◦

Fig. 1 shows redirected eye-images (with 0◦ output gaze
pitch) using input images with varying head-poses. The
method produces high-quality results on these inputs.

Using the evaluation protocol and metrics introduced in
Sec. 5.1 and Sec. 5.3 (in our paper), Fig. 2(a) shows that
the LPIPS scores of the generated images are consistent up
to ±15◦. The LPIPS scores for larger head angles (±30◦)
are worse than the ones of (0◦, ±15◦). We note that: 1)
There are fewer training samples with large head poses due

(a) (b)

(c) (d)

Figure 2: Quantitative evaluation results

to dlib detection failures. 2) These samples are more diffi-
cult in general, due to self-occlusion under extreme viewing
angles. For example, in the input of the bottom row (Fig. 1),
the eye-corner is completely occluded by the nose.

The blurriness scores in Fig. 2(b) indicate that head pose
only marginally affect image sharpness.

Fig. 2(c) shows that large head poses lead to large gaze
estimation error for our generated images. Comparing Fig.
2(c) and (d) shows that the gaze estimation error of gener-
ated and real images with the same head angle are consistent
with each other. It suggests that the generated images are of
similar quality to real ones wrt to the gaze estimation task.
In summary, this experiment provides evidence that the pro-
posed method performs well, even on eye images generated
with different head poses.

References
[1] Davis E. King. Dlib-ml: A machine learning toolkit. Journal

of Machine Learning Research, 10:1755–1758, 2009. 2


