
Figure 1. Face aging/rejuvenation results of IPCGAN [7] and S2-IPCGAN (IPCGAN with our S2-module).

Figure 2. Continuous face aging by S2-IPCGAN.

Supplementary Material for S2GAN

1. Using S2-module as IPCGAN [7] Plug-in

As mentioned in the manuscript, the S2-module in the

proposed method is orthogonal to the existing methods.

Therefore, the S2-module can be used as a plug-in to meth-

ods with a transformation network such as [2, 7, 8, 3] to re-

duce their computational consumption as well as enable the

continuous aging, while still keeping their own advantages.

Specifically, for methods with distinct models for each pair

of age groups such as [8, 3], the S2-module can reduce their

model number to only one. For all these methods [2, 7, 8, 3],

which takes nte+ntd time to generate aged images of all n

age groups, the S2-module can reduce their prediction time

to te + ntd (te and td denote the prediction time of encoder

and decoder respectively).

For better illustration, we insert our S2-module into IPC-

GAN [7] without modifying any other hyper-parameters,

which is referred to as S2-IPCGAN. Fig. 1 and Fig. 2 show

the visual results of IPCGAN and S2-IPCGAN, and Table 1

shows the model parameters and the prediction time for

generating aged images of all 5 age groups. As can be seen

from Fig. 1, the S2-IPCGAN achieves comparable visual

quality to the original IPCGAN. Moreover, as can be seen

from Table 1, the prediction time of S2-IPCGAN is 40%

less than the original IPCGAN with only a bit more param-

eters. Furthermore, by employing the S2-module, the S2-

IPCGAN is applicable for continuous face aging rather than

the original discrete group aging, as shown in Fig. 2. All

these benefits demonstrate the superiority of the S2-module

in our method.

2. Preservation of Personalized Characteristics

We also investigate the performance of preserving per-

sonalized characteristics. 50 random images with scar or

mole from MORPH are chosen as input, and the three

methods respectively generate 50×4=200 images for 4 age

groups. Then, three volunteers are asked to judge whether

the scar or mole is kept on the generated image. For each

method, Table 2 reports the proportion of the generated im-

ages which well preserve the scar or mole, averaged over the

three volunteers. As shown, our method better preserves the

personalized characteristics than the competitors.

3. Generalization Capability

We also investigate the generalization capability of the

proposed method by training on MORPH or CACD then

testing on LFW. As shown in Table 3, our method achieves

much better aging accuracy, with comparable face verifica-

tion rate and image quality (FID) to IPCGAN.

4. To Understand the Personalized Basis

To illustrate the functionality of the basis, we use a

model with 8 basis vectors and change the coefficient of

a single basis vector at one time. As shown in Fig. 5, when

changing the coefficient of basis #1, the network adds more

beard; when changing the basis #2, the network grays hair

and makes the laugh line wrinkle deeper and longer (the

skin color looks weird probably because such coefficients

are not being seen at training). As expected, the basis con-

tains personalized aging factors.

5. Additional Visual Results

Additional face aging/rejuvenation results of our S2GAN

are shown in Fig. 3 and Fig. 4.

6. Network Architectures

See Fig. 6.



Figure 3. Face aging results of our S2GAN on MORPH [5]. The test images are wrapped in red boxes. Best viewed in color and zooming in.

Figure 4. Face aging results of our S2GAN on CACD [1]. The test images are wrapped in red boxes. Best viewed in color and zooming in.
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Figure 5. Changing coefficient of single specified basis vector.
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Figure 6. Network Architectures. Conv(d, k, s, p) and DeConv(d,

k, s, p) respectively denote convolutional layer and transposed

convolutional layer with d as dimension, k as kernel size, s as

stride and p as padding size. SNConv and SNFC respectively de-

note convolutional layer and fully connected layer with spectral

normalization [4]. IN is instance normalization [6]. C© is the con-

catenation.

Method GPU Time / Image Parameters

IPCGAN [7] 5.1 ms 7.58 MB

S2-IPCGAN 3.1 ms 7.83 MB

Table 1. Computational cost of IPCGAN and S2-IPCGAN.

Method Scar/Mole Preservation

CAAE [9] 0%

IPCGAN [7] 71%

Ours 95%

Table 2. Scar/mole preservation rate.

Method
MORPH → LFW CACD → LFW

A. V. F. ↓ A. V. F. ↓

CAAE [9] 48% 56% 87 40% 59% 60

IPCGAN [7] 48% 99% 10 60% 96% 11

Ours 67% 99% 11 88% 96% 9

*
A. = Aging Accuracy, V. = Face Verification Rate, and F. = FID (lower is better).

Table 3. Generalization capability.
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