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1. Details of Architecture

Table 1 summarizes the architecture of the lane existence
prediction branch for ENet-SAD, ResNet-18-SAD and
ResNet-34-SAD. As to ResNet-18-SAD and ResNet-34-
SAD, we also use dilated convolution [10] to replace
the original convolution layers in the last two blocks for
ResNet-18 [1] and ResNet-34 [1].

Table 1. The architecture of the the lane existence prediction
branch. Assuming the input is 3 × 288 × 800. Note that the
output size is c × h × w before ”Flatten”, where c, h and w de-
note channel, height and width, respectively. The number in the
bracket besides the layer name is the parameter for that layer. For
instance, the four numbers besides dilated convolution denote ker-
nel size, stride, padding and dilated rate, respectively.

Layer Name Output Size

Dilated Convolution (3, 1, 4, 4) 32 × 36 × 100
Batch Normalization 32 × 36 × 100
Relu 32 × 36 × 100
Spatial Dropout (0.1) 32 × 36 × 100
Convolution (1, 1) 5 × 36 × 100
Spatial SoftMax 5 × 36 × 100
Average Pooling 5 × 18 × 50
Flatten 4500
Fully Connected 128
Relu 128
Fully Connected 4
Sigmoid 4

2. Lane Post-processing in CULane

For CULane, in the inference stage, we feed the image
into the ENet model. Then the multi-channel probability
maps and the lane existence vector are obtained. Follow-
ing [7, 3], the final output is obtained as follows: First, we
use a 9 × 9 kernel to smooth the probability maps. Then,
for each lane whose existence probability is larger than 0.5,
we search the corresponding probability map every 20 rows
for the position with the highest probability value. Finally,
we use cubic splines to connect these positions to get the

final output. The process improves the final lane prediction
results as it removes noises in the probability maps. The
process is depicted in Figure 1. Here, we differentiate dif-
ferent lane instances with different colors.

3. More Qualitative Results in Lane Detection
Figures 2 and 3 depict the qualitative results of

different algorithms on TuSimple [9], CULane [7] and
BDD100K [11]. As can be seen in Fig. 2, ENet-SAD can
detect lanes more precisely than ENet [8] in TuSimple and
CUlane. Besides, the detection of ENet-SAD [5] is less af-
fected by the irrelevant objects on the road compared with
SCNN [7]. As can be seen in Fig. 3, the output probabil-
ity maps of ENet-SAD are more compact and contain less
noise compared with those of SCNN in poor light condi-
tions. Compared with conventional knowledge distillation
methods [2, 4], SAD is more memory-efficient since it does
not require a teacher model. Besides, ENet-SAD can also
be applied to much larger lane detection datasets, e.g., Apol-
loScape dataset [6].
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Figure 1. The process of obtaining lanes from probability maps on the CULane dataset. From left to right: original image, probability map,
extracted lane points and final lane prediction.
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Figure 2. Performance of different algorithms on (a) TuSimple and
(b) CULane testing sets. The number below each image denotes
the accuracy. Ground-truth lanes are drawn on the input image.

ENet SCNNENet-SADinput

39.15 % 31.73 % 35.42 %

35.49 % 32.08 % 32.36 %
Figure 3. Performance of different algorithms on BDD100K test-
ing set. We visualize the probability maps to better showcase the
effect of adding self attention distillation. The brightness of the
pixel indicates the probability of this pixel belonging to lanes. The
number below each image denotes the pixel accuracy of lanes.
Ground-truth lanes are drawn on the input image.
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