
Supplementary material for

Multi-View Stereo by Temporal Nonparametric Fusion

A. Encoder–decoder architecture

We have included details on the network architecture that

was used for the encoder and decoder models. Table 5 lists

the netowrk components. ‘Ch. I/O’ refers to the channel

number of the input/output. All ‘* up’ means the upsam-

pled features, and the upsample layers use bilinear interpo-

lation. The plus sign ‘+’ refers to the concatenation op-

eration. The encoder consists of layers from ‘conv1’ to

’conv5 1’ , and the output of the ‘conv5 1’ layer is z in

Fig. 2, which will be transformed by the GP. The layers

from ‘upconv4’ to ‘disp0’ are part of the decoder, and the

‘disp0’ generates the final inverse depth prediction. All lay-

ers are followed by batch normalization and ReLU, except

the ‘disp*’ layers.

Additionally, Fig. 8 visualizes the encoder–decoder arci-

tecture as a block diagram. The orange blocks are parts of

the encoder, and the blue blocks form the decoder. The pur-

ple blocks indicate four ‘disp*’ layers. Except ‘disp*’ lay-

ers, each block is followed by a darker block which indicate

batch normalization and ReLU layers. There are four skip

connections in the figure, which corresponds to feeding the

outputs of ‘conv* 1’ layers into ‘iconv*’ layers.

Table 5. Details of the encoder–decoder network structures.

Name Kernel s Ch. I/O Input

conv1 7×7 1 67/128 reference image + cost volume

conv1 1 7×7 2 128/128 conv1

conv2 5×5 1 128/256 conv1 1

conv2 1 5×5 2 256/256 conv2

conv3 3×3 1 256/512 conv2 1

conv3 1 3×3 2 512/512 conv3

conv4 3×3 1 512/512 conv3 1

conv4 1 3×3 2 512/512 conv4

conv5 3×3 1 512/512 conv4 1

conv5 1 3×3 2 512/512 conv5

upconv4 3×3 1 512/512 conv5 1(after GP) up

iconv4 3×3 1 1024/512 conv4 1+upconv4

upconv3 3×3 1 512/512 iconv4 up

iconv3 3×3 1 1024/512 conv3 1+upconv3

disp3 3×3 1 512/1 iconv3

upconv2 3×3 1 512/256 iconv3 up

iconv2 3×3 1 513/256 conv2 1+upconv2+disp3 up

disp2 3×3 1 256/1 iconv2

upconv1 3×3 1 256/128 iconv2 up

iconv1 3×3 1 257/128 conv1 1+upconv1+disp2 up

disp1 3×3 1 128/1 iconv1

upconv0 3×3 1 128/64 iconv1 up

iconv0 3×3 1 65/64 upconv0+disp1 up

disp0 3×3 1 64/1 iconv0

B. Additional examples

In addition to those in the main paper, we show additional

qualitative comparisons of our method and other methods in

Fig. 9. In these example frames, our method predicts noise-

less dense depth maps with more details compared with

other methods. For example, with our method, the shape

of arms of chairs in row 3 and row 4 is more clearer. More-

over, our method provide more accurate prediction in both

near and far parts of the scene. For instance, the bag in

row 6 and the chair in row 5 show the better performance

in close by areas, and the table in row 4 and the fridge in

row 6 show the better performance in slightly farther areas.

Fig. 13 shows more 3D reconstruction results by apply-

ing TSDF fusion on 25 predicted depth maps, which prove

that our method have better performance on temporal con-

sistency.

Fig. 12 presents one failure example. As we mentioned,

one risk of our method is that wrong predictions can also

be propagated forward. In this case, the wrong predic-

tions inside red boxes exist among the first three successive

frames, but the erroneous resuts decay away for the latter

two frames, as the GP only bring a prior for the latent space

and the observations quickly overwhelm it.

C. Ablation study

In Sec. 4.2, we presented several ablation studies. Here we

provide additional qualitative comparisons (to supplement

the metrics in the main paper) of different choices of kernel

function in Fig. 10 and Fig. 11. We visualize the TD kernel,

exponential kernel, and Matérn kernel. The results show

that the TD kernel is limited to considering the consecutive

two neighbour frames as it uses a different distance met-

ric. Additionally, the Matérn kernel has stronger coupling

than exponential kernel. For each example, we show re-

sults of three frames, including both near neighbour and far

neighbour. We use red lines to label the selected frames in

the kernel images. It shows that for the far neighbour (see

frame 39 in Fig. 10 and frame 160 in Fig. 11), the results

of the TD kernel and w/o GP are worse than the results of

exponential kernel and Matérn kernel, as they cannot lever-

age information from distant past frames though they share

similar views. Comparing the exponential kernel and the

Matérn kernel, the results of Matérn have sharper edges.



D. Supplementary video

The project page (https://aaltoml.github.io/GP-MVS) fea-

tures a supplementary video with example sequences from

7SCENES (office-04) and SUN3D (mit 46 6lounge). The

benefits of the GP model are apparent especially in the cases

where the camera stays still. Furthermore, we have included

two example sequences captured from our iPad implemen-

tation, where the inference runs in real-time on the device.

Note that there are no view selection heuristics and we

only need to store the previous frame. The effect of the GP

can be seen clearly when the app starts up and the GP first

accumulates information over frames.

E. Inference time

We also evaluated the inference time on our desktop men-

tioned in Sec. 4: Our method (online) 0.076±0.003 s,

MVDepthNet 0.066±0.008 s, DeepMVS 4.9±0.1 s, MVS-

Net 3.2±0.1 s, and COLMAP 4.5±0.5 s. As we discussed

in Sec. 4.1, these results proves that the improvement intro-

duced by GP come at almost no additional cost.

https://aaltoml.github.io/GP-MVS
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Figure 8. The architecture of the encoder–decoder in our method. The orange blocks are parts of the encoder, and the blue blocks are the

decoder. The purple blocks indicate four ‘disp*’ layers. Except ‘disp*’ layers, each block are followed by a darker block which refer to

the batch normalization and ReLU layers.
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Figure 9. Qualitative results on SUN3D.
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Figure 10. Results comparison of different choices of kernel function on the redkitchen sequence in 7SCENES.
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Figure 11. Results comparison of different choices of kernel function on SUN3D.
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Figure 12. Failure cases example. The wrong predictions might be propagated forward because of the fusion in the latent space. However,

as the GP only bring a prior for the latent space, the erroneous depth estimates decay away quickly.
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Figure 13. 3D reconstruction examples. All results are fused from 25 depth maps.


