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In this supplementary document, we provide more ex-
perimental results and analyses of the proposed method.

1. More Analyses
1.1. Pixels Invalidating Mask Application

The proposed method predicts a mask and multiplies it
with an input image, masking out irrelevant pixels. How-
ever, the application of the mask will be ineffective for pix-
els with nearly zero values (0, 0, 0), as they will not change
their values before and after the mask application. Note
that the input images here are normalized by z-score nor-
malization. Thus, pixels with values (0, 0, 0) have colors
of the mean image (i.e., gray color) in the original, pre-
normalization images, since the normalization is done by
subtraction of the mean image of ImageNet.

To examine the effects of such pixels, we count their
population in all the images of NYU-v2. To be specific, we
count the pixels of the post-normalization images that sat-
isfy max(|r|, |g|, |b|) < τ for small τ . The results show that
they occupy only 0.19% and 1.67% of all the pixels of all
images for τ = 0.1 and 0.2, respectively. Thus, the popu-
lation of pixels that could invalidate the mask application is
very small, and we may think that their impacts on the mask
prediction and analyses based on them will be limited.

1.2. Visualization by Multiplication with Input Im-
ages

In the main paper, we use only predicted masks for visu-
alization, which indicate which pixels are (ire)relevant for
depth estimation. We show here another type of visualiza-
tion, input images multiplied with the predicted masks for
them, in Fig. 1. To be specific, for each input image,we mul-
tiply its normalized version with the predicted mask, and
then ‘unnormailized’ the multiplied image. For the latter
step, we scale the pixel values and then add the mean im-
age, so that their pixel values lie in the range [0, 255].

In Fig. 1, from left to right, the input I and I multiplied
with a) the mask M , b) its binarized version M ′, and c)

Table 1. The RMSE error for the mask prediction network (G)
with different depth layers.

Encoder Params RMSE(GT)
DRN-D-22 25.3M 0.740
DRN-D-38 35.4M 0.656
DRN-D-54 44.7M 0.647
DRN-D-105 63.7M 0.639

edge map, respectively; (a) and (c) have the same sparse-
ness level. An interesting observation is that it is a lot easier
for our visual system to infer depth from (a) or (b) than
from (c). As seen from these, there are stark differences
between M (or M ′) and the edge map, validating the dis-
cussion given in the main paper.

1.3. Influence of Capacity of the Mask Prediction
Network

In the main paper, we consider only a single artchitecture
for the mask prediction network G. We conducted an addi-
tional experiment to examine how large influence architec-
tural differences of G will have. To be specific, we increase
the layers of the encoder part of G from 22 (the original) to
38, 54, and 105. As seen in Table 1, the results (RMSE(M )
w/ λ = 5 in the same setting are 0.740, 0.656, 0.647, and
0.639, respectively, indicating that the more layers G has,
the better mask M will be obtained.

2. More Results on KITTI
2.1. More Scenes

Figures 2 - 3 show visualization results for different net-
works and input images from the test split of the KITTI
dataset in the same setting of the paper. The same obser-
vations as those in the main paper apply to these results.
Firstly, as with the above indoor images, there are clear dif-
ferences between the edge maps and the predicted masks.
For example, almost all shadow boundaries do not appear
in the masks despite their strong presence in the edge maps,



(a) I (b) I ⊗M (c) I ⊗M ′ (d) I ⊗ Edge

Figure 1. Another visualization using the predicted mask for the NYU-v2 dataset. An input image is multiplied with the predicted mask
for it. The multiplication is performed with normalized input images, which gives the actual input to the depth estimator N ; they are then
‘unnormalized’ for the purpose of visualization. The images shown in (b)-(d) show the ‘unnormalized’ version.

e.g., Figs. 2(2), 2(3), 2(6), 3(2)-(6), etc. This is also the case
with the white lines on the road surface in Fig. 2(1), 2(3),
etc. The borders between the roadway and sidewalks are
often highlighted in the predicted masks but are not clearly
seen in edge maps, such as those in Figs. 2(3), 3(1) and
3(6), etc. Secondly, the vanishing points and distant regions
are highlighted for all cases. As is seen also in the indoor
images, small to medium size objects are highlighted in the

mask not only with their boundaries but with their internal
regions.

2



RGB images

Edge maps

M for [16]
(ResNet-50)

M for [14]
(ResNet-50)

M for [14]
(DenseNet-161)

M for [14]
(SENet-154)

(1) (2) (3)

RGB images

Edge maps

M for [16]
(ResNet-50)

M for [14]
(ResNet-50)

M for [14]
(DenseNet-161)

M for [14]
(SENet-154)

(4) (5) (6)

Figure 2. Predicted masks for different networks trained on the KITTI dataset for different input images from the test split.
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Figure 3. Predicted masks for different networks trained on the KITTI dataset for different input images from the test split.
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Figure 4. Predicted masks for the three images of Fig.7 in the main paper with two different losses, i.e. mean REL (1st row) and mean
log 10 error (2st row).

2.2. Predicted Masks with Other Loss Functions

In the predicted masks for images of the KITTI dataset,
distant scene pixels are almost always highlighted, which
we think indicates the importance of vanishing points for
depth inference with outdoor scenes. However, one may
wonder if it is because of the loss employed for training in
the experiments described in our main paper (i.e., the abso-
lute difference in depths), which tends to give more weights
on distant scene pixels.

To clarify this, we conduct experiments with different
loss functions. To be specific, we tested two loss functions,
i.e., mean relative error (REL) and mean log 10 error, both
of which are scale-invariant and thus do not have the above
tendency (i.e., more weights on more distance pixels). The
results with the ResNet-50-based model are shown in Fig. 4
for the images of Fig.7 of the main paper; REL and log 10
are in the 1st and 2nd rows of Fig. 4, respectively. Al-
though there are slight differences, the same observation as
reported in the main paper holds true, e.g., more saliency on
distant points. The same applies to other images than these
three.
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