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In this supplementary document, we first provide deriva-
tions to support Equations 1 - 3 in the main paper (Sec. 1),
and then illustrate the detailed procedure of the Iterative
Voting Consensus [1] we apply in Sec. 3.1.3 of the main
paper (Sec. 2), as well as the sparsity patterns of the Hessian
Matrix when using different solving strategies (Sec. 3). Fi-
nally, we provide sample frames of our dataset (Sec. 4) with
our results for additional visual demonstrations on both the
synthetic (Sec. 5) and the KITTI (Sec. 6) datasets.

1. Derivation of Equations 1 - 3

In this section we present the derivation of equations in
the text. For simplicity, we denote the probabilistic density
function of multivariate normal distribution [2] as:

N (x;µ,Σ) ,
1√

(2π)k|Σ|
exp(−1

2
‖x− µ‖2Σ). (1)

The definitions of notations above remain the same as in the
main paper.

1.1. Equ. 1: Noise-aware distance term dij

We start by defining the affinity probability of landmark
i and landmark j as the product of 3D geometric proba-
bility P3D and vision based prior probability P2D with the
balance factor 2α:

Pij = P3D(P2D)2α. (2)

For P3D, we assume that the distance between the two
endpoints should stay unchanged in different frames, i.e.,
lijt = lijt′ ,∀t, t′, and utilize MLE (Maximum Likelihood Es-
timate) to estimate such an optimal length lij∗ considering
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the uncertainty of each lijt :

lij∗ = argmax
l
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2

∑
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‖lijt − l‖2σijt )
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l

∑
t

‖lijt − l‖2σijt

=
∑
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(
1

σijt
· lijt )

/∑
t

1

σijt
.

(3)

If the deviations of the observed lengths w.r.t. the op-
timal length conform to their noise distribution, the likeli-
hood should be large and vice versa. Hence, the 3D geo-
metric probability is summarized through the Maximum-a-
Posteriori (MAP) over its all observations from these co-
visible frames, whose the total number is denoted as ψij :

P3D =
∏
t

N (lijt ; lij∗ , σ
ij
t )

1

ψij . (4)

For the prior probability P2D, we define it as follows:

P2D = C2D exp

(
−1

2
max
t
‖xit − xjt‖2Σijt

)
, (5)

where C2D is the normalizing constant for the probability;
Σijt is the uncertainty of landmark distance in the image
space and we assume this uncertainty stays unchanged in
different frame t.

The noise-aware distance term dij is therefore taken as
the negative logarithm of the affinity probability Pij to
avoid numerical underflow:

dij =− logPij

=− logP3D − 2α logP2D

=
1

2
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t
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σijt

+ log σijt

)
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2
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.

(6)

1



We ignore the trailing common constant in dij since it
will not affect the result of the clustering algorithm which
relies only on the relative ordering of values.

1.2. Equ. 2: Approximated variance σijt
The variance of length σijt is approximated by error

propagation theorem [3], as the variance of h(x) can be de-
ducted by the variance of x denoted as Σx through a first-
order approximation:

Σh(x) ≈ JhΣxJ
>
h , (7)

with Jh being the Jacobian of h w.r.t. x. Such an approx-
imation is the basis for both the stereo back-projection un-
certainty and Equ. 2 of the main paper.

In Equ. 2 of the main paper, we define function h as the
Euclidean distance function:

h

([
X×,it

X×,jt

])
=
∥∥∥X×,it −X×,jt

∥∥∥ = lijt , (8)

and its Jacobian can be computed as:

Jh =
1

lijt

[
X×,it −X×,jt

X×,jt −X×,it

]>
. (9)

The covariance of argument x is:

Σx =

[
Σ×,it 0

0 Σ×,jt .

]
(10)

We can then obtain σijt = Σh by substituting Equ. 9 and
Equ. 10 into Equ. 7.

1.3. Equ. 3: Transformation estimation

The noise-aware pose estimation method assume the
frame-to-model transformation Tqc

t will perfectly align
Xc,i
t and X̂q,i

t−1 with tolerable noise Σig:

Tqc
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T

∏
i

∑
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N
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)
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N
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)
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(
1

2

∥∥∥TXc,i
t − X̂q,i

t−1

∥∥∥2

Σig

−Ci
g

)
(11)

The covariance Σig is derived from the uncertainty of ob-
servation Σit and the fused uncertainty of registered model
Gq,it−1 using error propagation theorem of Gaussian distribu-
tion and Gaussian mixture distribution [3].

2. Detailed Algorithm of Consensus Clustering
We detail how the Iterative Voting Consensus algorithm

is applied to our method in Alg. 1. For more analysis on the
performance of this algorithm we refer readers to [1]. The
desired number of the consensus clustering K is selected as
the sum of cluster numbers in all chunks for outdoor cases
and the maximum of cluster numbers among all chunks for
indoor cases. θ is initialized randomly, the probability of
cluster q = 0 (the cluster with static landmarks) is set to
80% while the other clusters are chosen uniformly. Clusters
with too few landmarks (≤ 2) are then pruned so the total
number of clusters is controllable.

Algorithm 1 Iterative Voting Consensus
Input: a set of landmarks

⋃
iX

i to be classified, a set of
clusters

⋃
m θm obtained from all the chunks and the de-

sired number of the consensus clustering K.
Output: Consensus clustering θ with K clusters.

Initialize θ as described in text;
repeat

Let Xq = {i|θ(i) = q} be the q-th cluster;
Compute the representation center for each clus-

ter: yXq = {majority{(Xq)1}, . . . ,majority{(Xq)m}},
where { (Xq)m} is the set of clustering results of Xq by
θm;

for all landmark i do
Re-assign θ(i) ← argminqD(yi, yXq), where

D(yi, yXq) is the Hamming distance between vector yi

and yXq , where only valid values in the sparse vector yi

are counted in the distance;
until θ does not change.

3. Hessian Matrix Sparsity Pattern
We plot the sparsity pattern of Hessian matrices of de-

coupled and fully-decoupled optimization methods in Fig-
ure 1. We define N as the number of landmarks (# Land-
marks), T as the number of frames (# Frames) and Q as the
number of clusters (# Clusters). Decoupled optimization
method essentially solves Q sub-problems and the size for
each of them is (N/Q+ T )2 while fully-coupled optimiza-
tion method solves one problem with size (N+TQ)2 which
is much larger. However, the above analysis does not reflect
the sparse nature of graph-based optimization and may not
precisely characterize experimental results. For empirical
study of the comparison, please refer to Sec. 4.3-F of the
paper.

4. Dataset
The synthetic dataset used for evaluation is named and

shown in Fig. 2. All indoor dataset has the prefix SUNCG
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Figure 1. Comparison of sizes and sparsity patterns of Hessian
matrix between decoupled and fully-coupled. Red: camera pose
block. Green: cluster motion block. Blue: landmark position
block. The Brown rectangles show a possible configuration of the
sparsity pattern of observations. The intersection of the transpar-
ent yellow rectangles denotes the 9 Hessian blocks filled for one
observation using Gauss-Newton method.

and the outdoor dataset has the common prefix CARLA.
Each dataset is captured using an ideally-synchronized
stereo camera and only images from the left camera are
shown.

5. Results on Synthetic Dataset
Please refer to Figs. 3-4. As a result, we obtain better co-

incidence with the ground-truth and outperform other com-
pared methods. Some trajectories from the ground-truth are
longer than our prediction, which is due to insufficient ob-
servations of the corresponding clusters.

6. Results on KITTI dataset
Figs. 5-7 show results of our algorithm on KITTI se-

quences using batch input. We are showing the raw output
without post-processing smoothing step mentioned in the
paper.
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Figure 2. Sampled frames from the synthetic dataset used in our experiments.
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Figure 3. Results on SUNCG Indoor dataset. Corresponding datasets (enumerated in row-major order) are SUNCG-1-1, SUNCG-1-2,
SUNCG-2-1, SUNCG-2-2, SUNCG-3-1, SUNCG-3-2, respectively. The three pictures below each trajectory plot show sampled frames
with landmark classification overlayed.
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Figure 4. Results on CARLA Outdoor dataset. Corresponding datasets (enumerated in row-major order) are CARLA-S1, CARLA-S2,
CARLA-L1, CARLA-L2, respectively. The four pictures below each trajectory plot show sampled frames with landmark classification
overlayed.



Figure 5. Results on KITTI 0013 sequence. The color of the bar on the left of each picture corresponds to the color of camera in the
trajectory.



Figure 6. Results on KITTI 0015 sequence. The color of the bar on the left of each picture corresponds to the color of camera in the
trajectory.



Figure 7. Results on KITTI 0017 sequence. The color of the bar on the left of each picture corresponds to the color of camera in the
trajectory.


