
Invariant Information Clustering for
Unsupervised Image Classification and Segmentation:

Supplementary Material

Xu Ji
University of Oxford
xuji@robots.ox.ac.uk

João F. Henriques
University of Oxford
joao@robots.ox.ac.uk

Andrea Vedaldi
University of Oxford

vedaldi@robots.ox.ac.uk

1. Release

We implemented IIC in PyTorch [7]. The code,
datasets and trained models have been released.
github.com/xu-ji/IIC

2. Further experimental details

We used three generic CNN bases b across our experi-
ments: A (ResNet34 [5]), B (4 convolutional layers) and
C (6 convolutional layers). For details see table 1. See ta-
ble 2 for per-experiment details including b, batch size, in-
put channels, input size, and number of clusters used in
overclustering denoted by k. Recall the latter refers to the
sole output head for semi-supervised overclustering but to
the auxiliary head for unsupervised IIC, where the main
head produces output with dimensionality kgt. For seg-
mentation, bilinear resampling is used to resize the network
output back to input size for implementational simplicity.
Since there is one pooling layer in network C which halves
spatial size, this is by a factor of 2.

A B C

1×Conv@64 1× Conv@64 1× Conv@64
3×BasicBlock@64 1× MaxPool 1× Conv@128

4×BasicBlock@128 1× Conv@128 1× MaxPool
6×BasicBlock@256 1× MaxPool 2× Conv@256
3×BasicBlock@512 1× Conv@256 2× Conv@512

1×AvgPool 1× MaxPool
1× Conv@512

Table 1: Architecture bases b, showing layer type and output channels.
Pooling layers do not change channel size. Convolutional layers have filter
size 3 or 5 and stride 1 or 2. The models used are standard ResNet and
VGG-style networks. Implementations are given in the code.

3. Semi-supervised overclustering study

Paper fig. 6 contains accuracies normalised by dividing
by the maximum accuracy for each series. The absolute
accuracies are given in table 3 and table 4.

b n h r kin kgt k crop size(s) input size

IIC STL10 A 700 5 5 2 10 70 64 64
CIFAR10 A 660 5 3 2 10 70 20 32
CIFAR100-20 A 1000 5 5 2 20 140 20 32
MNIST B 700 5 5 1 10 50 16, 20, 24 24
COCO-Stuff-3 C 120 1 1 5 3 15 128 128
COCO-Stuff C 60 1 1 5 15 45 128 128
Potsdam-3 C 75 1 1 4 3 24 200 200
Potsdam C 60 1 1 4 6 36 200 200

IIC* STL10 A 1400 5 5 2 10 140 64 64
CIFAR10 A 1320 5 3 2 10 140 20 32
CIFAR100-20 B 2800 5 5 5 20 280 20 24
MNIST B 350 5 5 1 10 25 16, 20, 24 24
COCO-Stuff-3 C 180 1 1 5 3 15 128 128
COCO-Stuff C 90 1 1 5 15 45 128 128
Potsdam-3 C 75 1 1 4 3 9 200 200
Potsdam C 60 1 1 4 6 24 200 200

Table 2: IIC denotes unsupervised clustering, IIC* denotes semi-
supervised overclustering. n denotes batch size, h and r denote number
of sub-heads and sample repeats (see paper section 4.1), kin denotes input
channels (1 for greyscale, 2 for Sobel filtered, 4 for RGBIR, 5 for Sobel fil-
tered with RGB), kgt denotes number of ground truth clusters, k denotes
number of output channels for overclustering. COCO-Stuff and COCO-
Stuff-3 are scaled by 0.33 prior to cropping; cropped images are scaled to
final input size with bilinear resampling.

4. Rendering predictions

To generate the visualisation in paper fig. 3, the entire
MNIST dataset was run through each network snapshot.
The prediction for each image x, say z = Φ(x) ∈ [0, 1]C

forC classes (see paper section 3.1), was rendered as a point
with coordinate position p:

p =
[C∑
c=1

zc · sin
(2πc

C

)
,

C∑
c=1

zc · cos
(2πc

C

)]
.

STL10 CIFAR10 CIFAR100-20 CIFAR100 MNIST
% of max k k ACC k ACC k ACC k ACC k ACC
100 140 63.1 140 65.0 280 34.7 1000 20.3 100 98.6
50 70 61.4 70 62.2 140 33.1 500 20.3 50 98.6
25 35 59.7 35 60.5 70 30.0 250 19.1 25 98.7
12.5 18 54.8 18 53.7 35 25.7 125 15.0 13 97.9

Table 3: Absolute accuracy for semi-supervised overclustering experiments
in paper fig. 6-right.

1

STL10 1.0 0.5 0.25 0.1 0.01
% of max k na ACC na ACC na ACC na ACC na ACC
100 5000 63.1 2500 61.0 1250 58.6 500 52.4 50 25.5
50 5000 61.4 2500 59.8 1250 59.1 500 57.8 50 30.7
25 5000 59.7 2500 59.2 1250 58.5 500 57.6 50 44.1
12.5 5000 54.8 2500 54.8 1250 54.1 500 50.6 50 41.3

1.0 0.5 0.25 0.1 0.01
na ACC na ACC na ACC na ACC na ACC

STL10 5000 63.1 2500 61.0 1250 58.6 500 52.4 50 25.5
CIFAR10 50000 62.9 25000 62.7 12500 62.6 5000 62.0 500 53.9
CIFAR100-20 50000 34.5 25000 34.0 12500 33.6 5000 31.9 500 20.1
CIFAR100 50000 20.3 25000 19.2 12500 17.9 5000 15.1 500 7.43
MNIST-25 60000 98.9 30000 98.9 15000 98.9 6000 98.9 600 98.9

Table 4: Absolute accuracy for semi-supervised overclustering experiments in paper fig. 6-left (top) and fig. 6-center (bottom).
na denotes number of labels used to find mapping from output k to kgt for evaluation.

5. Optional entropy coefficient

Consider inserting a coefficient, λ ≥ 1, into the defini-
tion of mutual information (eq. 3, paper section 3.1):

Iλ(z, z′) =

C∑
c=1

C∑
c′=1

Pcc′ · ln
Pcc′

Pλc ·Pλc′
(1)

= I1(z, z′) + (λ− 1) · (H(z) +H(z′)). (2)

For λ = 1, this reduces to the standard mutual informa-
tion definition. However, inserting an exponent of λ > 1
into the denominator of (1) translates into prioritising the
maximisation of prediction entropy (2).

6. Expectation over all shifts t ∈ T

Recall that IIC for segmentation involves maximising
mutual information between a patch and all its neighbours
within local box given by T (paper section 3.3). An alterna-
tive formulation of paper eq. (5) would involve bringing the
expectation over T within the computation for information
as follows:

max
Φ

I(P),

P =
1

n|T ||G||Ω|

n∑
i=1

∑
t∈T

∑
g∈G

Convolution︷ ︸︸ ︷∑
u∈Ω

Φu(xi) · [g−1Φ(gxi)]
>
u+t.

We found paper eq. (5) to work marginally but consistently
better, for example by 0.1% for COCO-Stuff-3 and 0.02%
for Potsdam-3. This is likely because closer neighbours are
more informative than farther ones, and an external expec-
tation avoids entangling the signal between close and far
neighbours prior to computing mutual information.

7. Random transformations g

Horizontal flipping, random crops and random colour
changes in hue, saturation and brightness constitute the g
used in most of our experiments. We also tried random
affine transforms but found our models performed better

without them, as the presence of skew and scaling mate-
rially affected the network’s ability to distill visual corre-
spondences between pairs of images.

8. Dataset sizes
For the sizes of the training and testing sets used in our

experiments, see table 5 and table 6.
STL10 CIFAR10 CIFAR100-20 MNIST

Train Test Train Test Train Test Train Test
IIC 113k 13k 60k 60k 60k 60k 70k 70k
Semi-supervised 105k 8k 50k 10k 50k 10k 60k 10k

Table 5: Datasets for image clustering.

COCO-Stuff-15 COCO-Stuff-3 Potsdam-6 Potsdam-3
Train Test Train Test Train Test Train Test

IIC 51804 51804 36660 36660 8550 5400 8550 5400
Semi-supervised 49629 2175 35228 1432 7695 855 7695 855

Table 6: Datasets for segmentation.

9. Baseline experiments
DeepCluster [1], also originally implemented in Py-

Torch, was adapted from the released image clustering code
for both purely unsupervised image clustering and segmen-
tation. Since this is not the intended task for the method,
DeepCluster was used as a feature learner, with k-means
performed on learned feature representations in order to ob-
tain cluster assignments for evaluation. Data augmentation
transforms are used as with IIC, the same b as IIC is used
for each model’s feature representation, and the number of
output clusters is set to 10 × kgt as suggested by the pa-
per. The feature descriptor lengths range from 4096 (image
clustering) to 512 (segmentation). For image clustering, the
k-means procedures at training and test time are both trained
and evaluated on the full training and test sets respectively.
For segmentation, since all descriptors for the training set
cannot fit in RAM (needed not only for the implementation
of k-means, but also for the PCA dimensionality reduction)
it was necessary to use sampling for k-means both during
computation of the pseudolabels for training, and evalua-
tion. This was done with 10M and 50M samples for Pots-
dam* and COCO-Stuff* datasets respectively. Once the k-
means centroids were obtained, training still occured over

Plane Bird Car Cat Deer Dog Horse Monkey Ship Truck

Figure 1: Additional unsupervised clustering (IIC) results on STL10. Predicted cluster probabilities shown as bars. Prediction corresponds to tallest, ground
truth is green, incorrectly predicted classes are red, and all others are blue. The bottom row shows failure cases.

Plane Bird Car Cat Deer Dog Horse Monkey Ship Truck

Figure 2: Semi-supervised overclustering results on STL10. Predicted cluster probabilities shown as bars. Prediction corresponds to tallest, ground truth is
green, incorrectly predicted classes are red, and all others are blue. The bottom row shows failure cases.

Figure 3: Additional unsupervised segmentation (IIC) results on COCO-Stuff-3 (non-stuff pixels in black). Left to right for each triplet: image, prediction,
ground truth.

Figure 4: Additional semi-supervised clustering for segmentation results on COCO-Stuff-3 (non-stuff pixels in black). Left to right for each triplet: image,
prediction, ground truth.

the entire training set with accuracy computed over the en-
tire test set. For the semi-supervised experiment, finetuning
of the learned representation was used, as with IIC.

ADC [4], originally implemented in TensorFlow, was
adapted from the released code for image clustering only.
For the fully unsupervised CIFAR100-20 experiment (pa-
per table 1), since ADC was already implemented for CI-
FAR100, we adopted the existing architecture and train-
ing settings for CIFAR100 when training CIFAR100-20.

Similarly, we adopted the existing architecture and settings
included for STL10 for the semi-supervised experiment,
training an SVM on top of fixed features as this is the semi-
supervised implementation provided in their code.

Triplets [8] was implemented as a representation learner
by setting the positive example for each image to be its ran-
dom transform, using the same transformations as the IIC
experiments for fairness. The negative example for each im-
age was set to a randomly selected image. K-means was run

Figure 5: Additional segmentation results for unsupervised IIC and semi-supervised overclustering on Potsdam-3. Left to right for each quadruplet: image,
IIC prediction, semi-supervised overclustering prediction, ground truth.

on the learned embeddings to obtain cluster assignments.
For segmentation baselines Isola [6] and Doersch [3],

which are unsupervised feature learning methods without
segmentation code, we use our own implementation. Since
both operate by predicting the spatial relationship between
pairs of patches (spatial proximity and exact relative posi-
tion respectively), we adapted them to segmentation by ran-
domly sampling pairs from the dense features produced by b
(which are either close or far for Isola, for example), using
additional linear layers to predict the spatial relationship,
minimising the distance between this prediction and known
ground truth, and backpropagating gradients end-to-end.

10. Further discussion of evaluation
For image clustering we use h = 5 sub-heads, which are

different randomly initialised instantiations of the same fi-
nal layer, for increased robustness (paper section 4.1). We
evaluate the accuracy of the model by identifying the sub-
head with the lowest training loss on the main output head
and reporting its test set accuracy. This evaluation proce-
dure makes no use of labels at all as the sub-head is selected
using the unsupervised loss. In table 7, we additionally
report the test set accuracy of the sub-head with the high-
est training set accuracy, which illustrates the maximum
achieved score by the sub-heads. For IIC, since the training
and test sets are the same (unlabelled data notwithstanding),
the latter is equivalent to running an identical training pro-
cedure h times, selecting a different sub-head each time,
and reporting best performance out of these runs.

STL10 CIFAR10 CFR100-20 MNIST

IIC (best sub-head) 61.0 61.7 25.7 99.3

Table 7: Image clustering accuracy of best sub-head.

11. Further discussion of avoiding degeneracy
Here we continue the discussion on how IIC avoids un-

desirable solutions (paper section 3.1). Recall that max-
imising mutual information entails maximising entropy and
minimising conditional entropy. Consider the malevolent

case of all images being assigned the ambivalent predic-
tion [1

C , . . . ,
1
C] for C clusters. For example, for C = 2, if

for both datapoints in all pairs the model predicts [0.5, 0.5],
then P = [[0.25, 0.25], [0.25, 0.25]]T . Conditional entropy
H(z|z′) would not be minimised to 0 in this case, as the
predictions are not deterministic (one-hot) [2]. To achieve
H(z|z′) = 0, predictions would need to be [0, 1] or [1, 0].
Thus as IIC minimises H(z|z′), it avoids ambivalent solu-
tions.

On the other hand, if all images are assigned to the same
cluster i, the joint distribution would be all-zero except at
Pii = 1. Likewise, the marginals would be all-zero except
at Pi = 1. Entropy H(z) would not be maximised, and
indeed would be minimised to H(z) = 0 as:

H(z) = −
C∑
c=1

Pc · lnPc. (3)

Thus as IIC maximises H(z), it also avoids this degenerate
solution.

12. Additional examples
For more examples of image clustering and segmenta-

tion results for both unsupervised IIC and semi-supervised
overclustering, see fig. 1, fig. 2, fig. 3, fig. 4 and fig. 5.

References
[1] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and

Matthijs Douze. Deep clustering for unsupervised learning
of visual features. arXiv preprint arXiv:1807.05520, 2018. 2

[2] Thomas M Cover and Joy A Thomas. Entropy, relative en-
tropy and mutual information. Elements of information the-
ory, 2:1–55, 1991. 4

[3] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsuper-
vised visual representation learning by context prediction. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 1422–1430, 2015. 4

[4] Philip Haeusser, Johannes Plapp, Vladimir Golkov, Elie Aljal-
bout, and Daniel Cremers. Associative deep clustering: Train-
ing a classification network with no labels. In German Con-
ference on Pattern Recognition, pages 18–32. Springer, 2018.
3

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016. 1

[6] Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H
Adelson. Learning visual groups from co-occurrences in
space and time. arXiv preprint arXiv:1511.06811, 2015. 4

[7] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-
entiation in pytorch. In NIPS-W, 2017. 1

[8] Matthew Schultz and Thorsten Joachims. Learning a distance
metric from relative comparisons. In Advances in neural in-
formation processing systems, pages 41–48, 2004. 3

