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1. Counter example

In the introduction of the paper we claim that a consistent

n-view fundamental matrix whosex 3 blocks form essen-
tial matrices does not necessarily form a consistentew

}@weizmann.ac.il

The trivial choice ofa = b = 0 yields an essential ma-
trix Fb3 which is consistent with the essential matrices
F15 and Fi3. Our aim is to make a specific choice of
Rs, R3,t2,t3,a, b such thatFy3 will be an essential ma-
trix that is inconsistent with the essential matridgs and

essential matrix. We justify this argument by a constructing Fi

a counter example for the case= 3.
First note that the following observation is true. If
t2,t3,a,b € R3 andR,, R3 € SO(3) and we set

Vi = Iax3, Vo= RS, Vs = RY +atl t; = 03

and
Fy; = Vi(lts = t;1)V}", 4,/ =123
then by construction
0 F  Fi3
F=|FL 0 Fy
FlT3 F2T3 0

is a consistent-view fundamental matrix, unless the outer
productat? is such that it reduces the full rank B to 2.
Examine each of the block matricés;:
Fio = Vi[t1 — to]x V' = [~ta]x Ro
Fiz = Vi[t1 — t3]x Vi = [—t3]« (B3 + tza’) = [~t3]« 3
Foy = Valta — t3]x V' = R3 [ta — t3]x (R3 + tza’)
It follows from this derivation that’, andF; 3 are essential
matrices. Next, we use the identiff®t], = R[t]«R”,
which holds for anyR € SO(3) andt € R3, to show that
for anyb € R3
Fos = [R3 (t2 — t3)] < R (R3 + tza’)
= [R5 (t2 — t3)]x (R3 (R3 + tsa" ) + Rj (t2 — t3)b")
= [Rg(tg — t3)]><Rg(R3 + t3aT + (t2 — tg)bT).

*Equal contributors

1.1 ChOOSingRg, R3,t5,t3,a,b
We first give some intuition for the way we set the values
of Ry, R3,to,t3,a,b. We look at the term

RT(R3 + tzal + (to — t3)bT) (1)

and wish to set the values such that this term does not col-

lapse toRZ Rs, but is still in the form of R R*, for some

R* € SO(3). Tothat end, we look for two rotation matrices

R* and R** such thatM = R* — R** has rank2, and set

the values such that the term it) ill be equal toRT R*.
Following the construction of/, the SVD of M is of

the form

g1 0 0
M=U|0 oo 0|VT
0 0 0

and we set
t3 =uw0,a=vy,b=vy ty =tz —u02. (2)
Therefore,

R*—R™ =M = u101v1T+u202v2T = tgaT-l-(tg—tQ)bT.

Now we setR, to be some rotation matrix ands = R**.
Clearly,

tgaT + (tg — t2)bT = RQRgR* — Rs3
which means

RITR* = RT(Rs + tza 4 (t3 — to)bT),



yielding if and only if the (thin) spectral decompositionf@fis of the

Fos = [RY (t2 — t3)]x R3 R, form
which is an essential matrix that in general is inconsistent E=[X,Y] z X7
with Fio, F13. o ’ ) YT
1.2. Technical details of the code provided for  Proof (=)
demonstrating a counter example o T A N
g P E:[U,V <E E){YT =0UxvVT L veoT =

We first randomly sampled two rotation matrices u
R*, R** until we obtainedV/ = R* — R** of rank2, and 05- (U+ VSO +V)T =05 (V-U)S(V-0)T =
we setR3 = R**. Then, we sampled randomly a rotation © T
matrix, and we seR,. These selections are stored in a file 0.5 [f] +V,V - f]} ( . [f] +V,V— U} =
called“counter. data.mat”. B

In the code we assign valuestg, ts, Rs, a, b, accord- X, Y] ( by ) { XxT } 3)
ing to (2). We verify that indeed”,,, Fi5 and F»3 are es- ’ - yT

sential matrices. By construction, tBeview fundamental A Ao .
matrix F is consistent. WhngEX = V05U + V) andY = v0.5(V — U). Since,

In order to verify that the essential matrices are not con- [ - ] [ﬁ, f/} = Igxe, it yields [ ;(; ] [X,Y] = Isxs,
sistent we extract the relative rotations from them. Each

essential matrix defines two possible relative rotations. We
evaluate the relatiof®;2 Ro3 R3; for each of the 8 choices
of triplet of relative rotations, and verify that none of them
closes a loop, i.e the following always holds

concluding that the last term i3 is indeed (thin) spectral
decomposition of.
(<)

E=[X,Y] = X, V)" = x2XT —-vyy? =
(" )

)

Ri2Ro3R31 # 1. 0.5(X +Y)E(X = Y)T +05(X - Y)S(X + V) =

An interesting observation. In addition, we verify in the
code that for any choice of signs for the eigenvectors’of
X,Y,itturns out that/0.5(X +Y) is indeed not a block ro- -/ T
tation matrix. Interestingly, it holds that, = —%_, which U,V] ( > > { T }
shows that by itself this condition, in this case, is not suf-

ficient for defining an appropriate consistent essential ma-\here{7 = VO5(X —Y)andV = V05(X +Y). The

trix. To COI’]Clude, requiring from a set of essential matrices same argument for Orthogona”ty works here, Showing that
to fulfill the sufficient conditions for consistentview fun- indeed that last term infj is SVD of E. ]

damental matrix does not provide sufficient conditions for
generating from this set, a consistent essential matrix. The3. Handling scaled rotations
counter example demonstrates the inconsistency of the es-

sential matrices, as well as the violation of our conditions
on the consistency of am-view essential matrix.

05X — Y, X +Y] ( . ) X+Y,X - y]T =

(4)

Our optimization enforces the consistency of camera
triplets, while allowing the essential matrices to be scaled
arbitrarily. This is possible, because our theory can be gen-
eralized to handle scaled rotations. Below we generalize
Definition 4 from the paper to allow essential matrices of
Below we prove Lemma 5 from the paper (which we re- the formE;; = «; R} ([ti]x — [t;]x)R;a; and prove that

2. Proof of Lemma 5

name here to be Lemma 1). the main theorem, i.e., Theorem 3 from the paper, holds for
, ‘ this generalization as well. This argument is then used to
Lemma 1. Let E € S3" of rank(6), andX € R®**®, a  justify our treatment of camera triplets.

diagonal matrix, with positive elements on the diagonal. Let
X,Y,U,V € R3*3 and we define the mappifg,Y) «
(U, V) : X = VO5(U+V),Y =05V -0U), U =
VO5(X —Y),V =05(X +Y).

Then, the (thin) SVD aF is of the form

Definition 1. Ann-view essential matri¥ is calledscaled
consistentif there existn rotation matrices{R;}7_,, n
vectors{t;}”_, andn non-zero scalar§«;}?_; such that
Eij = oqRY ([ti]x — [t;]x) Rjcy;.

R The following theorem is a generalized version of Thm. 2
p-lov by vT from the paper, and the derivations here are inspired by the
- [ ’ } ) Ur derivations made in [19].



Theorem 2. Let £ be a scaled consistent-view es-
sential matrix, associated with scaled rotation matrices
{a;R;}", a; # 0 and camera centerét;}? ,. E sat-
isfies the following conditions

1. E canbeformulated a8 = A+ AT whered = UV T
andU,V € R3nx3
OélR,{ 041R?T1
V= : U = :
anRz anRZTn
with T; = [t;]x and w.l.o.g}""", a?t; = 0.

. Each column ot/ is orthogonal to each column 6f,
i.e.,VTU = 03x3

. rank(V)=3

. If not all {t;}!, are collinear, then rank(U) and
rank(A) = 3. Moreover, if the (thin) SVD ofl is
A = USVT, with U,V € R3"*3 and ¥ € R3*3
then the (thin) SVD oF is

NS by
E=[0,7] ( . ) [
implying rank(E) = 6.

Proof. 1. The decomposition is a straightforward result
from Def. 1. Moreover, any global translation of all
the camera centers, will not change the values of the
entries of £. In particular, if we denote the camera
centers by{t;}* ; and they are translated to their new

~ 2%
positiont; = ¢, — ZZ"O; ,thenY a2t; = 0.

VT

UT

. By the decomposition above, we have that

[§ Oé?tz] X = 0
i=1

which concludes that each column©fis orthogonal
to each column of/.

VIU =Y o}R;R]'T; =
i=1

. rank(V) = 3 since each block oV is of rank 3 and
V has 3 columns.

. Assume by contradiction thatnk(U) < 3. Then,
Jt € Rt # 0, st. Ut = 0. This implies that
t; xt =0foralli =1,...,n. This implies that all
thet,’s are parallel ta, violating our assumption that
not all camera locations are collinear. Consequently

rank(U) = 3 and therefore alsoank(A) = 3. Fi-
nally, letA = UXVT the SVD ofA. SinceA = UVT
we get that

Span(U) = Span(U), Span(V) = Span(V).

) lor)

Following the result that the columns &fare orthog-
onal to those oF/, it turns out thaf /' V] is column
orthogonal, concluding that the form above is the SVD
of E, andrank(E) = 6.

Then, sinces = A + AT, we get

VT
UT

¥ 0

_ 1y T T [T )
E=UsV' +VsU" =[U V] (0 .

O

Next, we show that Thm. 3 in the paper is also applicable
with the generalized definition, i.e., Def.

Theorem 3. Let E € S3" be a consistent-view fundamen-
tal matrix with a set of, cameras whose centers are not all
collinear. We denote b, ,>_ € R3*3 the diagonal ma-
trices with the 3 positive and 3 negative eigenvalue& pf
respectively. The following conditions are equivalent:

1. E is a scaled consistemt-view essential matrix

2. The (thin) SVD oF can be written in the form

e (%w ) [r]

with U, V' € R37*3 such that eacl3 x 3 block of V/,
Vi,i=1,...,n,is ascaled rotation matrix, i.el; =
&;R;, whereR; € SO(3) and@; # 0. We say thal/
is a scaled block rotation matrix.

UT

. 2y = —%_ and the (thin) spectral decomposition of
E'is of the form

(% )|

such thaty/0.5(X + Y') is a scaled block rotation ma-
trix.

XT
YT

Proof. (1)=(2) Assume thatE is a scaled consistent-
view essential matrix. Then, according to Th&).E =
A4+ AT with A = UVT andU, V € R3%3 with

OllR’iT OélR,'erl

V: U:

anRZ: anRng



whereT; = [t;]«. SinceA = UVT andrank(A) = 3, then
ATA=VvUTUV andAT A = 0 with rank(AT A) = 3 (A

and AT A share the same null space). First, we construct a

spectral decomposition té” A, relying on the special prop-
erties ofU andV. We haverank(U) = 3, and therefore
UTU, which is a3 x 3, symmetric positive semi-definite
matrix, is of full rank. Its spectral decomposition is of the
form UTU = PDPT, whereP ¢ SO(3). (Spectral de-
composition guarantees th&te O(3). However,P can be
replaced by-P if det(P) = —1.) D € R**3 is a diago-
nal matrix consisting of the (positive) eigenvalueddfU.
This spectral decomposition yields the following decompo-
sition

ATA=vpPDPTVT. (5)
Now, note that
alRT
PTVIVP =P" [ R, Ry | ¢ | P
aan
= PT(Z 01‘2)]3><3P = (Z O‘?)Iiix?w
=1 1=1

Leta = """ , o?. By a simple manipulationsj becomes
a spectral decomposition

1 1
ATA= —VvPD)PTVvT —.
\/&V (aD)P'V 7a

On the other hand, the (thin) SVD df is of the formA =
USVT,whereU,V € R?*3, ¥ € R3*3, This means that

@)

(6)

ATA=vx2VT,

and 3 negative eigenvalugs , it follows that> = >, and
—Y = ¥_ concluding the proof.

(2)=-(1) Let E be a consistent-view fundamental ma-
trix that satisfies condition (2). We would like to show that
E'is a scaled consistentview essential matrix. By condi-
tion (2) £ can be written as

E=Us VT +vy 0T =0VT +VUT (10)
wherel = U, with V; = d;R;, R; € SO(3). By defi-
nition E;; = 0, and this implies that/; V" is a skew sym-
metric matrix. Using Lemma 4 in the papék, = V;7; for
some skew symmetric matrig = [fz-]x. PluggingU; and
V; in (10) yields

Eij = UJA/;T + ‘/ZUT = o?loZJRZTIR? — dlonf%lTJ

whereR; = Rf, a; = &; andt; = t;, concluding the
proof. Finally, the derivation of the equivalen® < (3)

is exactly as in Thm. 3 in the paper.

Corollary 1. Let E be a scaled consistemtview matrix,
then

1. The scgle of each blodk in the scaled block r9tation
matrix V can be calculated using by; = (det(V;))3

2. LetE be a scaled consistentview essential matrix.
Then, the transformatioa}z'ag(a%lgxg, o a%nlgxg) .
E. diag(o%fgxg, ..., 21I343) transformE to be a

consistent-view essential matrix.

Due to the uniqueness of the eigenvector decomposition,corgiary 2. A scaled consistent 3-view essential matrix is

(6) and (7) collapse to the same eigenvector decomposition
up to some global rotatiorf] € SO(3), that isﬁVP =

V H, which means that

o

V; = “LRITPHT. 8
Ja i (8)
SinceRY, P,HT € SO(3), then settingy; =: 2~ and

T Va

R; =  RTPHT € SO(3), shows that/ is a scaled block
rotation matrix. Finally, by Thm2, the (thin) SVD ofFE is
of the form

RS by
E=[07] ( 5 ) [
and according to Lemma, the eigenvalues of areX and

—3.. Since the elements on the diagonabbére positive,
and E' is symmetric with exactly 3 positive eigenvalugs

©)

VT
-

'invariant to pairwise scaling.

Proof. This proof is inspired by the proof of Corollary
2, presented in [15]. Letr be a scaled consistent 3-
view essential matrix whose blocks are definedkas =
a;RT(T; — T;)R;a;, and letE be a9 x 9 matrix whose
blocks are defined to bél-j = s;;E;; wheres;; # 0 are ar-
bitrary pairwise scale factors. Without loss of generality we
can assume that the number of negative scale factors is even
(otherwise we canlmultiply the entlire matrix by -1). Ti]ere-
fore, 51 = (H202)3, 5 = (%2%2)3, andsy = (2e%2)2
determine real values such thats, = s19, s153 = s13,
andssss = so3. Leta; = s;a; fori = 1,2, 3, we get that

Ei; = sijEyj = &;RY (T; — T)) R, (11)

Hence,E is a scaled consistent 3-view essentiatrix. [



4. Uniqueness of consistent camera matrices  that the third camera is not collinear with the rest of cam-
eras. From the consistency Bf»3, there exists a similarity

This part deals with the argument stated in Corollary 1 transformatiorS such that

in the paper, claiming that the recovery of camera matrices
from a consistent multiview essential matrix is unique up to S(Py) = Py, 8(Py) = P}, 8(Ps) = P
a global similarity transformation. More formally, we claim

and from the consistency dfy3,4 there exists a similarity

Theorem 4. Let E be a consistent n-view essential matrix N
transformationS such that

and let P, ..., P, be a set of non-collinear camera ma-

trices which is consistent witlr, then this set of camera S(Py) = P}, 8(P3) = P;,8(Py) = Py
matrices is unigue up to some global similarity transforma-

tion. Now, sinceP; = S(P,) = S(P,), it yields

We first justify the argument for 3 cameras, exemplify its
extension for 4 cameras and finally derives an induction for
n cameras.

A calibrated camera matrik; is represented as and consequently

_ RT(#—t ~ RY(E—t

Pi(R;,t;) = [R]| — R t;] € R RIR=RIR= R—F

whereR; andt; are the orientation and location of the i'th  Then we have
camera, respectively. In addition, we represent a similarity

transformationS(s, R, t) by a matrix of the form RI(t—ts) RI(t—1t2) N Tty bty

5 B B 5 5 & 3
S = |:SR t:| €R4X4 Lo . _ "
0T 1 ‘ and similarly from the relatiolP; = S(Ps) = S(Ps) we
get that

Then, applying a similarity transformation on a camera ma-

trix P; yields RY(t—t) RY(E—to) _ t oty s
5 B B 5 5 & &

S(P;)) = PS = [sRIR|R] (t — t;
(F) [sBy RIR: ) By subtracting the last two equations we have

which is . bt P
[RTRRZ- <t—ti>] i N ek N Y N A
i s S S

in a calibrated format. implying thatS = S.
3 cameras. We consider the case of 3 non-collinear cam-
eras. Note that every point correspondence between two o

the views can be extended to the third view by intersect- "~ ; . . . .

ing epipolar lines. Consequently, we can produce any num-"-View esse_:ntlal matrix. Erom th_e induction assumption we
ber of correspondences across the three views. Uniquenesl§nOW that S'tn_ceEl’_w(”‘.l) 'S c023|_ste_|nt,lthterz] recovery of t?teh
of reconstruction then follows from [12] who proved that 4 camera matrl_ces |fs urr%que and simriarly A gre:overy orthe
points in three views generally yield unique camera recov- camera marices Iroms, .., IS Unique. As In 4 cameras
ery. we assume without loss of generality that the third camera

4 cameras.We consider a consistent 4-view essential ma- Ids npt tc;olllngall; Wt':]h tt?r? rest of the (f:?;neras, and .a S'”.“'ar
trix I with 4 corresponding cameras erivation yields that the recovery of the cameras is unique

up to some global similarityransformation. O

Proof. The proofis by induction. The argument was proved
for 3 cameras and now we suppose that we have a consistent

Pi(Ry,t1), Pa(Ra,ta), P3(R3,t3), Py(Ry, t4).

Suppose we have another set of cameras which is consistent
with E,

Py (RY, %), P3 (R, t3), Ps (R3, t3), Py (R, t3).

We show that these two sets are the same up to a global sim-
ilarity transformation. Without loss of generality we assume



