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1. Counter example

In the introduction of the paper we claim that a consistent
n-view fundamental matrix whose3×3 blocks form essen-
tial matrices does not necessarily form a consistentn-view
essential matrix. We justify this argument by a constructing
a counter example for the casen = 3.

First note that the following observation is true. If
t2, t3, a,b ∈ R3 andR2, R3 ∈ SO(3) and we set

V1 = I3×3, V2 = RT
2 , V3 = RT

3 + atT
3 , t1 = 03×1

and
Fij = Vi([ti − tj ]×)V T

j , i, j = 1, 2, 3

then by construction

F =




0 F F13

FT
12 0 F23

FT
13 FT

23 0





is a consistentn-view fundamental matrix, unless the outer
productatT

3 is such that it reduces the full rank ofV3 to 2.
Examine each of the block matricesFij :

F12 = V1[t1 − t2]×V T
2 = [−t2]×R2

F13 = V1[t1 − t3]×V T
3 = [−t3]×(R3 + t3a

T ) = [−t3]×R3

F23 = V2[t2 − t3]×V T
3 = RT

2 [t2 − t3]×(R3 + t3a
T )

It follows from this derivation thatF12 andF13 are essential
matrices. Next, we use the identity[Rt]× = R[t]×RT ,
which holds for anyR ∈ SO(3) andt ∈ R3, to show that
for anyb ∈ R3

F23 = [RT
2 (t2 − t3)]×RT

2 (R3 + t3a
T )

= [RT
2 (t2 − t3)]×(RT

2 (R3 + t3a
T ) + RT

2 (t2 − t3)b
T )

= [RT
2 (t2 − t3)]×RT

2 (R3 + t3a
T + (t2 − t3)b

T ).

*Equal contributors

The trivial choice ofa = b = 0 yields an essential ma-
trix F23 which is consistent with the essential matrices
F12 and F13. Our aim is to make a specific choice of
R2, R3, t2, t3, a,b such thatF23 will be an essential ma-
trix that is inconsistent with the essential matricesF13 and
F12.

1.1. ChoosingR2, R3, t2, t3, a,b

We first give some intuition for the way we set the values
of R2, R3, t2, t3, a,b. We look at the term

RT
2 (R3 + t3a

T + (t2 − t3)b
T ) (1)

and wish to set the values such that this term does not col-
lapse toRT

2 R3, but is still in the form ofRT
2 R∗, for some

R∗ ∈ SO(3). To that end, we look for two rotation matrices
R∗ andR∗∗ such thatM = R∗ − R∗∗ has rank2, and set
the values such that the term in (1) will be equal toRT

2 R∗.
Following the construction ofM , the SVD ofM is of

the form

M = U




σ1 0 0
0 σ2 0
0 0 0



V T

and we set

t3 = u1σ1, a = v1,b = v2, t2 = t3 − u2σ2. (2)

Therefore,

R∗−R∗∗ = M = u1σ1v
T
1 +u2σ2v

T
2 = t3a

T +(t3−t2)b
T .

Now we setR2 to be some rotation matrix andR3 = R∗∗.
Clearly,

t3a
T + (t3 − t2)b

T = R2R
T
2 R∗ − R3

which means

RT
2 R∗ = RT

2 (R3 + t3a
T + (t3 − t2)b

T ),

1



yielding
F23 = [RT

2 (t2 − t3)]×RT
2 R∗,

which is an essential matrix that in general is inconsistent
with F12, F13.

1.2. Technical details of the code provided for
demonstrating a counter example

We first randomly sampled two rotation matrices
R∗, R∗∗ until we obtainedM = R∗ − R∗∗ of rank2, and
we setR3 = R∗∗. Then, we sampled randomly a rotation
matrix, and we setR2. These selections are stored in a file
called“counter data.mat”.

In the code we assign values tot2, t3, R3, a,b, accord-
ing to (2). We verify that indeedF12, F13 andF23 are es-
sential matrices. By construction, the3-view fundamental
matrixF is consistent.

In order to verify that the essential matrices are not con-
sistent we extract the relative rotations from them. Each
essential matrix defines two possible relative rotations. We
evaluate the relationR12R23R31 for each of the 8 choices
of triplet of relative rotations, and verify that none of them
closes a loop, i.e the following always holds

R12R23R31 6= I.

An interesting observation. In addition, we verify in the
code that for any choice of signs for the eigenvectors ofF ,
X,Y , it turns out that

√
0.5(X+Y ) is indeed not a block ro-

tation matrix. Interestingly, it holds thatΣ+ = −Σ−, which
shows that by itself this condition, in this case, is not suf-
ficient for defining an appropriate consistent essential ma-
trix. To conclude, requiring from a set of essential matrices
to fulfill the sufficient conditions for consistentn-view fun-
damental matrix does not provide sufficient conditions for
generating from this set, a consistent essential matrix. The
counter example demonstrates the inconsistency of the es-
sential matrices, as well as the violation of our conditions
on the consistency of ann-view essential matrix.

2. Proof of Lemma 5

Below we prove Lemma 5 from the paper (which we re-
name here to be Lemma 1).

Lemma 1. Let E ∈ S3n of rank(6), andΣ ∈ R3×3, a
diagonal matrix, with positive elements on the diagonal. Let
X,Y, U, V ∈ R3n×3, and we define the mapping(X,Y ) ↔
(U, V ) : X =

√
0.5(Û + V̂ ), Y =

√
0.5(V̂ − Û), Û =√

0.5(X − Y ), V̂ =
√

0.5(X + Y ).
Then, the (thin) SVD ofE is of the form

E =
[
Û , V̂

]( Σ
Σ

)[
V̂ T

ÛT

]

if and only if the (thin) spectral decomposition ofE is of the
form

E = [X,Y ]

(
Σ

−Σ

)[
XT

Y T

]

Proof. (⇒)

E =
[
Û , V̂

]( Σ
Σ

)[
V̂ T

ÛT

]

= ÛΣV̂ T + V̂ ΣÛT =

0.5 ∙ (Û + V̂ )Σ(Û + V̂ )T − 0.5 ∙ (V̂ − Û)Σ(V̂ − Û)T =

0.5
[
Û + V̂ , V̂ − Û

]( Σ
−Σ

)[
Û + V̂ , V̂ − Û

]T
=

[X,Y ]

(
Σ

−Σ

)[
XT

Y T

]

(3)

whereX =
√

0.5(Û + V̂ ) andY =
√

0.5(V̂ − Û). Since,[
ÛT

V̂ T

] [
Û , V̂

]
= I6×6, it yields

[
XT

Y T

]

[X,Y ] = I6×6,

concluding that the last term in (3) is indeed (thin) spectral
decomposition ofE.

(⇐)

E = [X,Y ]

(
Σ

−Σ

)

[X,Y ]T = XΣXT − Y ΣY T =

0.5(X + Y )Σ(X − Y )T + 0.5(X − Y )Σ(X + Y )T =

0.5[X − Y,X + Y ]

(
Σ

Σ

)

[X + Y,X − Y ]T =

[Û , V̂ ]

(
Σ

Σ

)[
V̂ T

ÛT

]

(4)

whereÛ =
√

0.5(X − Y ) and V̂ =
√

0.5(X + Y ). The
same argument for orthogonality works here, showing that
indeed that last term in (4) is SVD ofE.

3. Handling scaled rotations

Our optimization enforces the consistency of camera
triplets, while allowing the essential matrices to be scaled
arbitrarily. This is possible, because our theory can be gen-
eralized to handle scaled rotations. Below we generalize
Definition 4 from the paper to allow essential matrices of
the formEij = αiR

T
i ([ti]× − [tj ]×)Rjαj and prove that

the main theorem, i.e., Theorem 3 from the paper, holds for
this generalization as well. This argument is then used to
justify our treatment of camera triplets.

Definition 1. Ann-view essential matrixE is calledscaled
consistent if there existn rotation matrices{Ri}n

i=1, n
vectors{ti}n

i=1 andn non-zero scalars{αi}n
i=1 such that

Eij = αiR
T
i ([ti]× − [tj ]×)Rjαj .

The following theorem is a generalized version of Thm. 2
from the paper, and the derivations here are inspired by the
derivations made in [19].



Theorem 2. Let E be a scaled consistentn-view es-
sential matrix, associated with scaled rotation matrices
{αiRi}n

i=1, αi 6= 0 and camera centers{ti}n
i=1. E sat-

isfies the following conditions

1. E can be formulated asE = A+AT whereA = UV T

andU, V ∈ R3n×3

V =






α1R
T
1

...
αnRT

n




 U =






α1R
T
1 T1

...
αnRT

n Tn






with Ti = [ti]× and w.l.o.g
∑n

i=1 α2
i ti = 0.

2. Each column ofU is orthogonal to each column ofV ,
i.e.,V T U = 03×3

3. rank(V)=3

4. If not all {ti}n
i=1 are collinear, then rank(U) and

rank(A) = 3. Moreover, if the (thin) SVD ofA is
A = ÛΣV̂ T , with Û , V̂ ∈ R3n×3 and Σ ∈ R3×3

then the (thin) SVD ofE is

E =
[
Û , V̂

]( Σ
Σ

)[
V̂ T

ÛT

]

implying rank(E) = 6.

Proof. 1. The decomposition is a straightforward result
from Def. 1. Moreover, any global translation of all
the camera centers, will not change the values of the
entries ofE. In particular, if we denote the camera
centers by{t̃i}n

i=1 and they are translated to their new

positionti = t̃i −
∑

α2
i t̃i∑
α2

i
, then

∑
α2

i ti = 0.

2. By the decomposition above, we have that

V T U =
i=n∑

i=1

α2
i RiR

T
i Ti = [

i=n∑

i=1

α2
i ti]× = 0

which concludes that each column ofU is orthogonal
to each column ofV .

3. rank(V ) = 3 since each block ofV is of rank 3 and
V has 3 columns.

4. Assume by contradiction thatrank(U) < 3. Then,
∃t ∈ R3, t 6= 0, s.t. Ut = 0. This implies that
ti × t = 0 for all i = 1, . . . , n. This implies that all
theti’s are parallel tot, violating our assumption that
not all camera locations are collinear. Consequently

rank(U) = 3 and therefore alsorank(A) = 3. Fi-
nally, letA = ÛΣV̂ T the SVD ofA. SinceA = UV T

we get that

Span(U) = Span(Û), Span(V ) = Span(V̂ ).

Then, sinceE = A + AT , we get

E = ÛΣV̂ T + V̂ ΣÛT =
[
Û V̂

]
(

Σ 0
0 Σ

)[
V̂ T

ÛT

]

.

Following the result that the columns ofU are orthog-
onal to those ofV , it turns out that

[
Û V̂

]
is column

orthogonal, concluding that the form above is the SVD
of E, andrank(E) = 6.

Next, we show that Thm. 3 in the paper is also applicable
with the generalized definition, i.e., Def.1.

Theorem 3. LetE ∈ S3n be a consistentn-view fundamen-
tal matrix with a set ofn cameras whose centers are not all
collinear. We denote byΣ+, Σ− ∈ R3×3 the diagonal ma-
trices with the 3 positive and 3 negative eigenvalues ofE,
respectively. The following conditions are equivalent:

1. E is a scaled consistentn-view essential matrix

2. The (thin) SVD ofE can be written in the form

E =
[
Û , V̂

]( Σ+

Σ+

)[
V̂ T

ÛT

]

with Û , V̂ ∈ R3n×3 such that each3 × 3 block ofV̂ ,
V̂i, i = 1, . . . , n, is a scaled rotation matrix, i.e.,̂Vi =
α̂iR̂i, whereR̂i ∈ SO(3) and α̂i 6= 0. We say that̂V
is a scaled block rotation matrix.

3. Σ+ = −Σ− and the (thin) spectral decomposition of
E is of the form

E = [X,Y ]

(
Σ+

Σ−

)[
XT

Y T

]

such that
√

0.5(X + Y ) is a scaled block rotation ma-
trix.

Proof. (1)⇒(2) Assume thatE is a scaled consistentn-
view essential matrix. Then, according to Thm.2, E =
A + AT with A = UV T andU, V ∈ R3n×3 with

V =






α1R
T
1

...
αnRT

n




 U =






α1R
T
1 T1

...
αnRT

n Tn








whereTi = [ti]×. SinceA = UV T andrank(A) = 3, then
AT A = V UT UV andAT A � 0 with rank(AT A) = 3 (A
andAT A share the same null space). First, we construct a
spectral decomposition toAT A, relying on the special prop-
erties ofU andV . We haverank(U) = 3, and therefore
UT U , which is a3 × 3, symmetric positive semi-definite
matrix, is of full rank. Its spectral decomposition is of the
form UT U = PDP T , whereP ∈ SO(3). (Spectral de-
composition guarantees thatP ∈ O(3). However,P can be
replaced by−P if det(P ) = −1.) D ∈ R3×3 is a diago-
nal matrix consisting of the (positive) eigenvalues ofUT U .
This spectral decomposition yields the following decompo-
sition

AT A = V PDP T V T . (5)

Now, note that

PT V T V P = PT
[
α1R1 . . . αnRn

]






α1R
T
1

...
αnRT

n




P

= PT (
n∑

i=1

α2
i )I3×3P = (

n∑

i=1

α2
i )I3×3.

Let α =
∑n

i=1 α2
i . By a simple manipulation (5) becomes

a spectral decomposition

AT A =
1
√

α
V P (αD)PT V T 1

√
α

. (6)

On the other hand, the (thin) SVD ofA is of the formA =
ÛΣV̂ T , whereÛ , V̂ ∈ R3n×3, Σ ∈ R3×3. This means that

AT A = V̂ Σ2V̂ T . (7)

Due to the uniqueness of the eigenvector decomposition,
(6) and (7) collapse to the same eigenvector decomposition,
up to some global rotation,H ∈ SO(3), that is 1√

α
V P =

V̂ H , which means that

V̂i =
αi√
α

RT
i PHT . (8)

SinceRT
i , P,HT ∈ SO(3), then settingα̂i =: αi√

α
and

R̂i =: RT
i PHT ∈ SO(3), shows that̂V is a scaled block

rotation matrix. Finally, by Thm.2, the (thin) SVD ofE is
of the form

E =
[
Û , V̂

]( Σ
Σ

)[
V̂ T

ÛT

]

(9)

and according to Lemma1, the eigenvalues ofE areΣ and
−Σ. Since the elements on the diagonal ofΣ are positive,
andE is symmetric with exactly 3 positive eigenvaluesΣ+

and 3 negative eigenvaluesΣ−, it follows thatΣ = Σ+ and
−Σ = Σ− concluding the proof.

(2)⇒(1) Let E be a consistentn-view fundamental ma-
trix that satisfies condition (2). We would like to show that
E is a scaled consistentn-view essential matrix. By condi-
tion (2)E can be written as

E = ÛΣ+V̂ T + V̂ Σ+ÛT = Ū V̂ T + V̂ ŪT (10)

whereŪ = ÛΣ+ with V̂i = α̂iR̂i, R̂i ∈ SO(3). By defi-
nition Eii = 0, and this implies that̄UiV̂

T
i is a skew sym-

metric matrix. Using Lemma 4 in the paper,Ūi = V̂iT̂i for
some skew symmetric matrix̂Ti = [t̂i]×. PluggingŪi and
V̂i in (10) yields

Eij = ŪiV̂
T
j + V̂iŪ

T
j = α̂iα̂jR̂iT̂iR̂

T
j − α̂iα̂jR̂iT̂jR̂

T
j

= α̂iRi
T ([ti]× − [tj ]×)Rjα̂j

whereRi = R̂T
i , αi = α̂i and ti = t̂i, concluding the

proof. Finally, the derivation of the equivalence(2) ⇔ (3)
is exactly as in Thm. 3 in the paper.

Corollary 1. Let E be a scaled consistentn-view matrix,
then

1. The scale of each block̂Vi in the scaled block rotation
matrix V̂ can be calculated using bŷαi = (det(V̂i))

1
3

2. LetE be a scaled consistentn-view essential matrix.
Then, the transformationdiag( 1

α̂1
I3×3, . . . ,

1
α̂n

I3×3) ∙
E ∙ diag( 1

α̂1
I3×3, . . . ,

1
α̂n

I3×3) transformE to be a
consistentn-view essential matrix.

Corollary 2. A scaled consistent 3-view essential matrix is
invariant to pairwise scaling.

Proof. This proof is inspired by the proof of Corollary
2, presented in [15]. LetE be a scaled consistent 3-
view essential matrix whose blocks are defined asEij =
αiR

T
i (Ti − Tj)Rjαj , and letẼ be a9 × 9 matrix whose

blocks are defined to bẽEij = sijEij wheresij 6= 0 are ar-
bitrary pairwise scale factors. Without loss of generality we
can assume that the number of negative scale factors is even
(otherwise we can multiply the entire matrix by -1). There-
fore, s1 = ( s12s13

s23
)

1
2 , s2 = ( s23s12

s13
)

1
2 , ands3 = ( s13s23

s12
)

1
2

determine real values such thats1s2 = s12, s1s3 = s13,
ands2s3 = s23. Let α̃i = siαi for i = 1, 2, 3, we get that

Ẽij = sijEij = α̃iR
T
i (Ti − Tj)Rjα̃j (11)

Hence,Ẽ is a scaled consistent 3-view essentialmatrix.



4. Uniqueness of consistent camera matrices

This part deals with the argument stated in Corollary 1
in the paper, claiming that the recovery of camera matrices
from a consistent multiview essential matrix is unique up to
a global similarity transformation. More formally, we claim

Theorem 4. Let E be a consistent n-view essential matrix
and let P1, . . . , Pn be a set of non-collinear camera ma-
trices which is consistent withE, then this set of camera
matrices is unique up to some global similarity transforma-
tion.

We first justify the argument for 3 cameras, exemplify its
extension for 4 cameras and finally derives an induction for
n cameras.

A calibrated camera matrixPi is represented as

Pi(Ri, ti) = [RT
i | − RT

i ti] ∈ R
3×4

whereRi andti are the orientation and location of the i’th
camera, respectively. In addition, we represent a similarity
transformationS(s,R, t) by a matrix of the form

S =

[
sR t
0T 1

]

∈ R4×4.

Then, applying a similarity transformation on a camera ma-
trix Pi yields

S(Pi) = PS = [sRT
i R|RT

i (t − ti)]

which is [

RT
i R|

RT
i (t − ti)

s

]

in a calibrated format.
3 cameras. We consider the case of 3 non-collinear cam-
eras. Note that every point correspondence between two of
the views can be extended to the third view by intersect-
ing epipolar lines. Consequently, we can produce any num-
ber of correspondences across the three views. Uniqueness
of reconstruction then follows from [12] who proved that 4
points in three views generally yield unique camera recov-
ery.
4 cameras.We consider a consistent 4-view essential ma-
trix E with 4 corresponding cameras

P1(R1, t1), P2(R2, t2), P3(R3, t3), P4(R4, t4).

Suppose we have another set of cameras which is consistent
with E,

P ∗
1 (R∗

1, t
∗
1), P

∗
2 (R∗

2, t
∗
2), P

∗
3 (R∗

3, t
∗
3), P

∗
4 (R∗

4, t
∗
4).

We show that these two sets are the same up to a global sim-
ilarity transformation. Without loss of generality we assume

that the third camera is not collinear with the rest of cam-
eras. From the consistency ofE123, there exists a similarity
transformation̄S such that

S̄(P1) = P ∗
1 , S̄(P2) = P ∗

2 , S̄(P3) = P ∗
3

and from the consistency ofE234 there exists a similarity
transformation̂S such that

Ŝ(P2) = P ∗
2 , Ŝ(P3) = P ∗

3 , Ŝ(P4) = P ∗
4 .

Now, sinceP ∗
2 = S̄(P2) = Ŝ(P2), it yields

[

RT
2 R̄|

RT
2 (t̄ − t2)

s̄

]

=

[

RT
2 R̂|

RT
2 (t̂ − t2)

ŝ

]

and consequently

RT
2 R̄ = RT

2 R̂ ⇒ R̄ = R̂.

Then we have

RT
2 (t̄ − t2)

s̄
=

RT
2 (t̂ − t2)

ŝ
⇒

t̄

s̄
−

t2
s̄

=
t̂

ŝ
−

t2
ŝ

and similarly from the relationP ∗
3 = S̄(P3) = Ŝ(P3) we

get that

RT
3 (t̄ − t2)

s̄
=

RT
3 (t̂ − t2)

ŝ
⇒

t̄

s̄
−

t3
s̄

=
t̂

ŝ
−

t3
ŝ

.

By subtracting the last two equations we have

t3 − t2
s̄

=
t3 − t2

ŝ
⇒ s̄ = ŝ ⇒ t̄ = t̂,

implying thatS̄ = Ŝ.

Proof. The proof is by induction. The argument was proved
for 3 cameras and now we suppose that we have a consistent
n-view essential matrix. From the induction assumption we
know that sinceE1,...,(n−1) is consistent, the recovery of the
camera matrices is unique and similarly the recovery of the
camera matrices fromE2,...,n is unique. As in 4 cameras
we assume without loss of generality that the third camera
is not collinear with the rest of the cameras, and a similar
derivation yields that the recovery of the cameras is unique
up to some global similaritytransformation.


