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1. Overview
This supplement contains the following additional material:

• Sec. 2: Detailed derivations and proofs omitted from the main paper.

• Sec. 3: Details about datasets, our experimental setups, and the three disentanglement metrics used for quantitative
performance assessment.

• Sec. 4: Additional experimental results.

• Sec. 5: Model architectures used in the experiments.

2. Derivations and Proofs
2.1. Invariance of KL Divergence under Nonlinear Invertible Transformation

Theorem 1. Let x and z be two random variables related as z = enc(x) for a nonlinear invertible function enc(·). Then,

KL(pd(x)||p(x)) = KL(q(z)||p(z)). (1)

Proof. We let dec(·) := enc−1(·), thus x = dec(z) and z = dec−1(x). From the theorem of density of function of random
variable, we can express p(x) in terms of p(z) as follows:

p(x) = p(dec−1(x)) · | det∇xdec−1(x)| (2)

= p(z) · 1

|det∇zdec(z)|
(3)

In (2), ∇ is the Jacobian operator (yielding a square invertible matrix), and (3) is from the theorem of derivative of inverse
function, namely ∇xdec−1(x) = (∇zdec(z))−1 where the latter (·)−1 is the matrix inversion.

Similarly pd(x) can be written as:

pd(x) = q(z) · 1

|det∇zdec(z)|
(4)

Now the following completes the proof:

KL(pd(x)||p(x)) =

∫
pd(x) · log

pd(x)

p(x)
dx (5)

=

∫
q(z) · 1

|det∇zdec(z)|
· log

q(z)

p(z)
dx (6)

=

∫
q(z) · log

q(z)

p(z)
dz (7)

= KL(q(z)||p(z)), (8)

where in the third equality, we used dx = |det∇zdec(z)|dz.
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2.2. Decomposition of KLz

Theorem 2. Let R and N be the sets of relevant and nuisance variables, respectively, in the latent space z ∈ Z ⊆ <d such
that R ∪N = {1, . . . , d} and R ∩N = ∅. The KL divergence in the latent space Z can then be decomposed as

KLz := KL

(
q(z)||

d∏
j=1

p(zj)

)
= TC +

∑
j∈R

KL(q(zj)||p(zj)) +
∑
j∈N

KL(q(zj)||p(zj), (9)

where

TC := KL

(
q(z)||

d∏
j=1

q(zj)

)
. (10)

Proof.

KLz := KL

(
q(z)||

d∏
j=1

p(zj)

)
(11)

= Eq(z)

[
log

q(z)∏d
j=1 p(zj)

]
= Eq(z)

[
log

q(z)
∏d
j=1 q(zj)∏d

j=1 p(zj)
∏d
j=1 q(zj)

]
(12)

= KL

(
q(z)||

d∏
j=1

q(zj)

)
+ Eq(z)

[
log

∏d
j=1 q(zj)∏d
j=1 p(zj)

]
(13)

= TC +

d∑
j=1

Eq(z)

[
log

q(zj)

p(zj)

]
= TC +

d∑
j=1

KL
(
q(zj)||p(zj)

)
(14)

= TC +
∑
j∈R

KL(q(zj)||p(zj)) +
∑
j∈N

KL(q(zj)||p(zj)) (15)

2.3. Bound on Factorized Divergence KL(q(zj)||p(zj))

Theorem 3. Let q(zj) and p(zj) denote the approximate and prior marginal densities, respectively, of factor j in latent space
Z . Let q(zj |x) be the posterior (encoder driven) density of the latent factor conditioned on input x with density pd(x). Then

KL(q(zj)||p(zj)) ≤ Epd(x)[KL(q(zj |x)||p(zj))]. (16)

Proof.

Epd(x)[KL(q(zj |x)||p(zj))]− KL(q(zj)||p(zj)) (17)

= Epd(x)

[
Eq(zj |x)[log q(zj |x)− log p(zj)]

]
− Epd(x)

[
Eq(zj |x)[log q(zj)− log p(zj)]

]
(18)

= Epd(x)

[
Eq(zj |x)[log q(zj |x)− log q(zj)]

]
(19)

= Epd(x)[KL(q(zj |x)||q(zj))] ≥ 0. (20)

2.4. Justification of the Prior Choice in BF-VAE-0

Recall that in BF-VAE-0, we adopted a 0-mean, free-precision Gaussian as a prior model p(zj), namely p(zj) =
N (zj ; 0, α−1

j ), and asserted that it is as flexible as a free-mean, free-precision Gaussian N (zj ;µj , α
−1
j ), in terms of matching

p(zj) and q(zj), i.e., minimizing Epd(x)[KL(q(zj |x)||p(zj))], the upper bound of KL(q(zj)||p(zj)).
We prove this assertion by showing that the following minimization problem wrt p(zj) = N (zj ;µj , α

−1
j ) attains the

optimum µ∗j = 0 with arbitrary α∗j (i.e., either α∗j > 1 or α∗j < 1 or even α∗j = 1).

min
µj ,αj>0

Epd(x)[KL(q(zj |x)||N (zj ;µj , α
−1
j ))], (21)



where q(zj |x) = N (zj ;mj(x), sj(x)2).
Note that the objective of (21) is essentially an average of KL divergences over different x’s, and we can write (21) as

(dropping the subscript j for simplicity):

min
µ,α>0

Ep(m,s2)[KL(N (m, s2)||N (µ, α−1))], (22)

for some distribution p(m, s2). Since the KL term admits a closed-form, (22) is equivalent to (up to constant):

min
µ,α>0

Ep(m,s2)

[
α
(
(m− µ)2 + s2

)]
− logα, (23)

Letting s2 = E[s2] leads to:
min
µ,α>0

αEp(m)

[
(m− µ)2

]
+ αs2 − logα. (24)

Without loss of generality, we can assume that p(m) is symmetric (i.e., p(m) = p(−m)). Then (24) can be written as (using
E[m] = 0):

min
µ,α>0

α
(
m2 + µ2 + s2

)
− logα, (25)

where we let m2 = E[m2].
From (25), it is obvious that the optimal µ∗ = 0 and α∗ =

(
m2 +s2

)−1
, where the latter can take arbitrary value depending

on m and s. This justifies our choice of 0-mean and free-precision Gaussians as latent prior distributions.

2.5. Bound on Average Marginal Data Log-Likelihood in BF-VAE-1

Theorem 4. Let {xn}Nn=1 be the set of iid ambient observations. Then, the negative log likelihood of these observations can
be upper bounded by the BF-VAE-1 model as

− log p
(
{xn}Nn=1

)
≤ Rec(θ, ν) +

1

N
KL(q(α)||p(α)) + Epd(x)Eq(α)

[
KL(q(z|x)||p(z|α))

]
. (26)

Proof. We begin with the KL divergence between the true posterior distribution and our variational approximation.

KL

(
q(α)

N∏
n=1

q(zn|xn)

∥∥∥∥ p(α, {zn}Nn=1|{xn}Nn=1

))
(27)

= Eq(α)
∏

n q(z
n|xn)

[
log

q(α)
∏
n q(z

n|xn)

p
(
α, {zn}Nn=1|{xn}Nn=1

)] (28)

= Eq(α)
∏

n q(z
n|xn)

[
log

q(α)
∏
n q(z

n|xn)

p
(
α, {zn}Nn=1, {xn}Nn=1

)
/p
(
{xn}Nn=1

)] (29)

= Eq(α)
∏

n q(z
n|xn)

[
log

p
(
{xn}Nn=1

)
q(α)

∏
n q(z

n|xn)

p(α)
∏
n p(z

n|α)p(xn|zn)

]
(30)

= Eq(α)
∏

n q(z
n|xn)

[
log p

(
{xn}Nn=1

)
+ log

q(α)

p(α)
+ log

∏
n q(z

n|xn)∏
n p(z

n|α)
− log p(xn|zn)

]
(31)

= log p
(
{xn}Nn=1

)
+ KL(q(α)||p(α)) + Eq(α)

[
N∑
n=1

{
KL(q(zn|xn)||p(zn|α))− Eq(zn|xn)

[
log p(xn|zn)

]}]
(32)

Using the fact that KL divergence (27) is non-negative, we have the following inequality:

− log p
(
{xn}Nn=1

)
≤ KL(q(α)||p(α)) + Eq(α)

[
N∑
n=1

{
KL(q(zn|xn)||p(zn|α))− Eq(zn|xn)

[
log p(xn|zn)

]}]
(33)

Dividing both sides by N leads to our upper bound U1 in (26).



2.6. Explicit Parametric Forms of KL Divergences for BF-VAE-1 Likelihood Bound

Theorem 5. Let q(α) and p(α) be parameterized as Gamma densities:

q(α) =
∏
j

G(αj ; âj , b̂j), (34)

p(α) =
∏
j

G(αj ; aj , bj), (35)

where G(y; a, b) = ba

Γ(a)y
a−1e−by , and Γ(·) is the gamma function. Then,

KL(q(α)||p(α)) =

d∑
j=1

(
(âj − aj)ψ(âj) + aj log

b̂j
bj

+ log
Γ(aj)

Γ(âj)
+
âj(bj − b̂j)

b̂j

)
. (36)

Proof. We will use the following well-known fact of the expectations of Gamma and log-Gamma random variables. For
y ∼ G(y; a, b),

E[y] =
a

b
, E[log y] = ψ(a)− log b, (37)

where ψ(·) is the digamma function (i.e., ψ(y) = Γ′(y)
Γ(y) ).

First we tackle KL(q(α)||p(α)), the second term in U1 in (26). It essentially involves in the KL divergence between two
univariate Gamma distributions, which can be derived as:

KL(G(y; â, b̂)||G(y; a, b)) = EG(y;â,b̂)

[
log
G(y; â, b̂)

G(y; a, b)

]
(38)

= EG(y;â,b̂)

[(
â log b̂− log Γ(â) + (â− 1) log y − b̂y

)
−
(
a log b− log Γ(a) + (a− 1) log y − by

)]
(39)

= â log b̂− a log b− log Γ(â) + log Γ(a) + (â− a)(ψ(â)− log b̂) + (b− b̂) â
b̂

(40)

= (â− a)ψ(â) + a log
b̂

b
+ log

Γ(a)

Γ(â)
+
â(b− b̂)

b̂
(41)

Since KL(q(α)||p(α)) =
∑d
j=1 KL

(
G(αj ; âj , b̂j)||G(αj ; aj , bj)

)
, we directly arrive at (36).

Theorem 6. Let q(α) and p(α) be parameterized as Gamma densities in (34) and (35). Then,

Eq(α)

[
KL(q(z|x)||p(z|α))

]
=

1

2

d∑
j=1

(
− ψ(âj) + log

b̂j
sj(x)2

+
âj
(
mj(x)2 + sj(x)2

)
b̂j

− 1

)
. (42)

Proof. Here we derive Epd(x)Eq(α)

[
KL(q(z|x)||p(z|α))

]
, the third term in U1 in (26). The outer expectation over pd(x) is

computed by Monte Carlo estimation with minibatches, while for a given x, the inner expectation of the Gaussian KL over the
Gamma also admits a closed form as follows:

Eq(α)

[
KL(q(z|x)||p(z|α))

]
=

d∑
j=1

Eq(αj)

[
KL
(
N (mj(x), sj(x)2) || N (0, α−1

j )
)]

(43)

=

d∑
j=1

Eq(αj)

[
1

2

(
αj
(
mj(x)2 + sj(x)2

)
− 1− log sj(x)2 − logαj

)]
(44)

=
1

2

d∑
j=1

(
− ψ(âj) + log

b̂j
sj(x)2

+
âj
(
mj(x)2 + sj(x)2

)
b̂j

− 1

)
. (45)



2.7. Decomposition of Approximate Marginal q(z) in BF-VAE-2

Theorem 7. Let q(z) be the marginal density of given by encoder q(z|x), where the ambient data is distributed according to
pd(x). Then,

q(z) = q(zR) ·
∏
j∈N

q(zj), (46)

where R and N are the sets of relevant and nuisance variables, respectively.

Proof. From the definition of the marginal q(z) we get:

q(z) =

∫
q(z|x)pd(x)dx =

∫ d∏
j=1

q(zj |x)pd(x)dx (47)

=

∫ ∏
j∈R

q(zj |x)
∏
j∈N

q(zj |x)pd(x)dx (48)

=

∫ ∏
j∈R

q(zj |x)
∏
j∈N

q(zj)pd(x)dx (49)

=

(∫ ∏
j∈R

q(zj |x)pd(x)dx

)
·
∏
j∈N

q(zj) (50)

= q(zR) ·
∏
j∈N

q(zj). (51)

3. Details of Datasets, Experimental Setups, and Disentanglement Metrics
3.1. Datasets

In this work, we consider the following datasets:

• 3D-Face [7]. This dataset contains synthetic face images rendered from a 3D face mode, with four factors of variation
(number of modes): subject ID (50), azimuth (21), elevation (11), and lighting along the horizon (11).

• Sprites [6]. The dataset consists of 737, 280 binary images of three shapes (oval, square, and heart), undergoing
variations in four geometric factors: scale (6 variation modes), rotation (40), and X , Y translation (32 modes each),
resulting in five factors total.

• Color-Extended Sprites (C-Spr) [5]. The dataset extends Sprites by filling the sprites with some randomly chosen
colors in the images. Since the color values are not fully explored for every configuration of the factors, we regard it as
simple noise, not a factor, as is also intended by the dataset creators.

• Oval Shape Subset (O-Spr). From the original dataset, we select the oval shape images, yielding four independent
factors of variation across 245, 760 images.

• Teapots [1]. The dataset contains 200,000 images of a teapot across five different sources of variation: azimuth,
elevation, and the color of the teapot object. Since the factor labels provided in the dataset are real and uniquely valued,
to evaluate metrics I and II, we discretized them into ten bins.

• Celeb-A [4]. This popular dataset captures variations in 40 binary attributes including azimuth, hair color, bang, gender,
mustache, brightness, etc. The is a challenging dataset because the labels (attributes) are biased1 and noisy.

1Celeb-A attributes are not fully disentangled. For instance, the attributes male and bald (or mustache) are highly correlated, and the dataset does not
fully/uniformly cover the entire joint factor space (e.g., (male = 0, bald = 1) is rare).



3.2. Experimental Setup

The latent dimension d for all models is set to 10 for all datasets except d = 20 for Celeb-A. For the trade-off parameters,
we have used the optimal values reported in the publications: i) β-VAE; β = 8.0 for 3D-Face, β = 4.0 for Sprites,
C-Spr, and O-Spr, and β = 6.0 for Teapots, ii) Factor-VAE: γ = 10.0 for 3D-Face and Teapots, and γ = 35.0
for Sprites, C-Spr, and O-Spr. For our BF-VAE-0 and BF-VAE-2 models, the sparseness trade-off parameters (η’s)
are obtained through grid search to yield the best performance. They are: i) BF-VAE-0: η = 1.0 (3D-Face), η = 0.05
(Sprites), η = 0.01 (C-Spr), η = 0.05 (O-Spr), and η = 0.03 (Teapots), ii) BF-VAE-2: ηS = ηH = 1.0 (3D-Face),
ηS = 0.05, ηH = 0.1 (Sprites), ηS = 0.01, ηH = 0.1 (C-Spr), ηS = ηH = 0.1 (O-Spr and Teapots).

3.3. Disentanglement Metrics

Metric I [2] - One factor fixed. The goal of this metric is to assess the variability of the discovered latent factors as a
function of the true factor variance. Let v be the vector of ground-truth factors for x. For each factor index j, a set of L
samples v(i) = (vj , v

(i)
−j), i = 1, . . . , L, is collected, corresponding to clamping of factor j (no variance) and free variation of

the remaining factors. The existence of latent factor(s) zu with similar, vanishing variation would then indicate the discovery
of known factor j. In practice, this is accomplished by evaluating the encoder’s outputs, z(i) ∼ q(z|x(i)) for images x(i)

corresponding to samples v(i). The (sample) variance V(z) is used to find the index u of the factor with the smallest variance,

u := arg min
1≤j≤d

V(zj). (52)

u then serves as the covariate for predicting the true factor index j: the metric is defined to be the accuracy of a simple classifier
that predicts j from u, among all j = 1, . . . , d. If a model achieves strong disentanglement, we can expect u = j (up to a
permutation), making the classification easy. In particular, since u, j ∈ {1, . . . , d}, the data pairs {(u, j)} can be represented
as a simple contingency table, in which a majority vote classifier is used for prediction. We use L = 100 samples to form
each pair (u, j), and collect 800 pairs to compute the accuracies of the majority vote classifiers. Since the metric is based on
random samples, we repeat the evaluation ten times randomly to report the means and standard deviations.

Metric II - One factor varied. Following the notion of disentanglement, another reasonable approach was proposed in [3]
to collect samples with only one factor varied, instead of one factor fixed as in Metric I. That is, we collect images with
v(i) = (v

(i)
j , v−j) for i = 1, . . . , L. (52) is then modified to arg max, and we can use the same majority vote classification

to report the accuracy. The evaluation results in [3] demonstrate that this metric shows higher agreement with qualitative
assessment of disentanglement than Metric I. However, note that to compute Metric II the dataset needs to contain dense joint
variations in all true factors, typically a reasonable assumption for large, diverse datasets.

Metric III [1] proposed three metrics: 1) Disentanglement, 2) Completeness, and 3) Informativeness. These scores are
regression-prediction based, using the latent vector z as the covariate for individual ground-truth factors vj . Specifically, D
measures the degree of dedication of each latent variable zk in predicting vj against others v−j (the higher, the better), C
captures the degree of exclusive contribution of zk in predicting vj against others z−k (the higher, the better), and I measures
the prediction error (the smaller, the better). For the regressors, both LASSO and Random Forests are used.

4. Additional Experimental Results
As we stated in the main paper, we place additional experimental results in this section: They are: i) Qualitative results

(latent space traversal) on all datasets, and ii) Comparison with high-capacity prior models, the mixtures of Gaussians (Sec. 4.2).

4.1. Qualitative Results: Latent Space Traversal and Learned Relevance Indicators

As we did in the main paper, we depict images synthesized by traversing a single latent variable at a time and fixing the rest,
while showing the accuracy of variable relevance indicator. Recall that our models have implicit/explicit indicators that point
to relevant and nuisance variables. Specifically, i) BF-VAE-0 (learned αj): j relevant if αj is away from 1, while j is nuisance
if αj ≈ 1, ii) BF-VAE-1 (DOF of the corrected prior p(zj), equal to 2âj): j is relevant if âj is small (distant from Gaussian),
and vice versa, iii) BF-VAE-2 (learned relevance indicator variable rj): j is relevant if rj is large, and vice versa.

As the relevance indicators have different interpretation across the three models, we define proxy indicators r̂ for BF-VAE-0
and BF-VAE-1, which have consistent interpretation as that of BF-VAE-2, i.e., high/low rj or r̂j indicates relevance/nuisance
of the variable zj . Specifically, we define: r̂j = |1− α−1

j | for BF-VAE-0. For BF-VAE-1, we normalize the DOF (2âj) values
to [0, 1]-scale by a linear transformation.

The results are shown, with the discussions in the captions, for:



• 3D-Face in Fig. 1, Fig. 2, Fig. 3

• Sprites in Fig. 4, Fig. 5, Fig. 6

• C-Spr in Fig. 7, Fig. 8, Fig. 9

• O-Spr in Fig. 10, Fig. 11, Fig. 12

• Teapots in Fig. 13, Fig. 14, Fig. 15

• Celeb-A in Fig. 16, Fig. 17, Fig. 18.

Also, the enlarged version of the latent traversal images for BF-VAE-2 in the main paper is shown in Fig. 19. As detailed in the
caption, adopting large η leads only strong factors to be detected, while having small η allows many weak factors identified.

4.2. Comparison with High Capacity Prior Model (Mixture of Gaussians)

The results on all labeled datasets are shown in Fig. 20. As evident, the MoG overfits as K increases for all datasets,
implying that overly flexible prior model can be detrimental to the disentanglement performance. Equally significantly, MoG
underperforms across the entire range of K, compared to our BF-VAE models.

5. Model Architectures and Optimization
In this section, we provide the detailed specifications of the structures of different deep VAE models used in our experiments

as well as the optimization strategies.

5.1. Model Architectures

We adopt the model architectures and optimization parameters similar to those in [2]. The encoders consist of 5-layer
conv-nets followed by two fully connected layers, and the decoders are 4-layer deconv-nets after two fully connected layers.
We apply (4 × 4) filters for the convolution and the transposed convolution (deconv) in both models. For the adversarial
discriminator D used for optimizing the TC loss, we use a 6-layer MLP model with 1000 hidden units per layer and the leaky
ReLU nonlinearity. Specifically,

• Model architecture for 3D Faces and Sprites(Sprites, C-Spr, and O-Spr) is specified in Tab. 1.

• Model architecture for Teapots and Celeb-A is listed in Tab. 2.

Tab. 1. Encoder and Decoder architecture for 3D-Faces and Sprites (Sprites, C-Spr, and O-Spr) dataset.

ENCODER DECODER

INPUT 64 × 64 GREYSCALE IMAGE (3D-FACES)
INPUT 64 × 64 BINARY IMAGE (SPRITES) INPUT ∈ R10

4 × 4 CONV. 32 RELU. STRIDE 2
FC. 256 RELU (3D-FACES)
FC. 128 RELU(SPRITES)

4 × 4 CONV. 32 RELU. STRIDE 2 FC. 4 × 4 × 64 RELU.

4 × 4 CONV. 64 RELU. STRIDE 2 4 × 4 UPCONV. 64 RELU. STRIDE 2

4 × 4 CONV. 64 RELU. STRIDE 2 4 × 4 UPCONV. 32 RELU. STRIDE 2

FC. 256 RELU. FC. 2 × 10 (3D-FACES)
FC. 128 RELU. FC. 2 × 10 (SPRITES) 4 × 4 UPCONV. 32 RELU. STRIDE 2

4 × 4 UPCONV. 1. STRIDE 2

5.2. Optimization

The optimization parameters are chosen similarly as those in [2]. We use Adam with the batch size 64. We run 3× 105

batch iterations with learning rates either 10−4 or 10−5. In RF-VAE [3] and our BF-VAE-2, the relevance vector r is initialized
as all-0.5 vector.



Figure 1. Latent space traversal in BF-VAE-0 on the 3D-Face dataset. The learned prior variances α−1 (the value 1.0 depicted as the red
dotted line) and the (proxy) relevance indicator r̂j = |1− α−1

j | are shown at the bottom. The four visually evident dimensions of variability
(z4, z5, z8, z9) are highlighted within colored boxes, where each exactly matches one of the four ground-truth factors (z4 = azimuth, z5 =
lighting, z8 = elevation, and z9 = subject ID). The learned αj for all these four dims are away from 1, and the proxy indicator r̂j for these
dimensions are high (away from 0). Note that z6 is emphasized as relevant by our model, but the traversal does not seem to depict significant
changes. Upon further investigation, it is revealed that this factor correlates with the subject ID, but less so than z9. The chosen traversal
range suppressed visual variability of z6, but not z9, suggesting the need to carefully determine the range bounds.



Tab. 2. Encoder and Decoder architecture for Teapots and Celeb-A dataset.

ENCODER DECODER

INPUT 64 × 64 × 3 RGB IMAGE INPUT ∈ R10

4 × 4 CONV. 32 RELU. STRIDE 2 FC. 256 RELU.

4 × 4 CONV. 32 RELU. STRIDE 2 FC. 2 × 2 × 256 RELU.

4 × 4 CONV. 64 RELU. STRIDE 2 4 × 4 UPCONV. 64 RELU. STRIDE 2

4 × 4 CONV. 64 RELU. STRIDE 2 4 × 4 UPCONV. 64 RELU. STRIDE 2

4 × 4 CONV. 256 RELU. STRIDE 2 4 × 4 UPCONV. 32 RELU. STRIDE 2

FC. 256 RELU. FC. 2 × 10. 4 × 4 UPCONV. 32 RELU. STRIDE 2

4 × 4 UPCONV. 3. STRIDE 2
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Figure 2. Latent space traversal in BF-VAE-1 on the 3D-Face dataset. The DOF (2âj) of the corrected prior p(zj) and the (proxy)
relevance indicator r̂j (obtained by linearly transforming/interpolating the DOF into [0, 1]) are shown at the bottom. The four recovered,
highlighted, dimensions match the ground-truth factors, and their p(zj)’s also have relatively small DOFs, as expected, while the proxy
indicator r̂j for these dimensions are high (away from 0).



Figure 3. Latent space traversal in BF-VAE-2 on the 3D-Face dataset. The learned relevance vector r is shown at the bottom. Again the
four factors are nearly correctly identified, corresponding to the high values in the indicator variables rj’s.



Figure 4. Latent space traversal in BF-VAE-0 on the Sprites dataset. The learned prior variances α−1 (the value 1.0 depicted as the red
dotted line) and the (proxy) relevance indicator r̂j = |1− α−1

j | are shown at the bottom. The five visually evident dimensions of variability
(z1, z3, z4, z7, z9) are highlighted within colored boxes, where each corresponds to: z1 = scale, z3 = shape and rotation, z4 = Y -pos,
z7 =X-pos, and z9 = shape and rotation. The learned αj for all these five dims are away from 1, as we anticipated, while r̂j are high for
those dimensions.



Figure 5. Latent space traversal in BF-VAE-1 on the Sprites dataset. The DOF (2âj) of the corrected prior p(zj) and the (proxy)
relevance indicator r̂j (obtained by linearly transforming/interpolating the DOF into [0, 1]) are shown at the bottom. The five recovered,
highlighted, dimensions match the ground-truth factors.



Figure 6. Latent space traversal in BF-VAE-2 on the Sprites dataset. Again the five factors are nearly correctly identified except for
j = 4, corresponding to the high values in the indicator variables rj’s.



Figure 7. Latent space traversal in BF-VAE-0 on the C-Spr dataset. The learned prior variances α−1 (the value 1.0 depicted as the red
dotted line) and the (proxy) relevance indicator r̂j = |1− α−1

j | are shown at the bottom. The five visually evident dimensions of variability
(z3, z5, z6, z9, z10) are highlighted within colored boxes, where each exactly matches one of the five ground-truth factors (z3 = X-pos,
z5 = Y -pos, z6 = scale, z9 = rotation, and z10 = shape and rotation). The learned αj for all these five dims are away from 1, while r̂j are
high for those dimensions.



Figure 8. Latent space traversal in BF-VAE-1 on the C-Spr dataset. The DOF (2âj) of the corrected prior p(zj) and the (proxy) relevance
indicator r̂j (obtained by linearly transforming/interpolating the DOF into [0, 1]) are shown at the bottom. The five recovered, highlighted,
dimensions match the ground-truth factors, and their p(zj)’s also have relatively small DOFs and large proxy indicator values, except for
j = 5.



Figure 9. Latent space traversal in BF-VAE-2 on the C-Spr dataset. Again the five factors are nearly correctly identified, corresponding to
the high values in the indicator variables rj’s, except for j = 6.



Figure 10. Latent space traversal in BF-VAE-0 on the O-Spr dataset. The learned prior variances α−1 (the value 1.0 depicted as the red
dotted line) and the (proxy) relevance indicator r̂j = |1 − α−1

j | are shown at the bottom. Those five highlighted dimensions of major
variability (z1, z2, z5, z6, z9), match the four ground-truth factors (scale, X-, Y-pos, rotation), while the rotation is spread across z6 and z9.
These factors also exactly correspond to the learned αj’s that are distant from 1, as we anticipated, while r̂j are high for those dimensions.



Figure 11. Latent space traversal in BF-VAE-1 on the O-Spr dataset. The DOF (2âj) of the corrected prior p(zj) and the (proxy) relevance
indicator r̂j (obtained by linearly transforming/interpolating the DOF into [0, 1]) are shown at the bottom. Similar to BF-VAE-0, it identifies
five variables with the rotation spread across z1 and z9. These relevant variables, as expected, have small DOFs in p(zj)’s, while the proxy
indicator r̂j for these dimensions are high (away from 0).



Figure 12. Latent space traversal in BF-VAE-2 on the O-Spr dataset. The learned relevance vector r is shown at the bottom. The learned r
accurately indicates the relevant dimensions.



Figure 13. Latent space traversal in BF-VAE-0 on the Teapots dataset. The learned prior variances α−1 (the value 1.0 depicted as the red
dotted line) and the (proxy) relevance indicator r̂j = |1− α−1

j | are shown at the bottom. The five variables that explain the major variability
in images, (z2, z4, z6, z7, z8), do not perfectly match the true factors one by one, and two or more factors are entangled in some variables
(e.g., z8 explains both color R and azimuth). Note that a similar failure was also observed in [1] with complex ResNet models.



Figure 14. Latent space traversal in BF-VAE-1 on the Teapots dataset. The DOF (2âj) of the corrected prior p(zj) and the (proxy)
relevance indicator r̂j (obtained by linearly transforming/interpolating the DOF into [0, 1]) are shown at the bottom. Overall similar
behaviors as BF-VAE-0, but the DOFs of the corrected prior are small for those relevant dimensions correctly identifying the dimensions of
major variability, while the proxy indicator r̂j for these dimensions are high (away from 0).



Figure 15. Latent space traversal in BF-VAE-2 on the Teapots dataset. The learned relevance vector r is shown at the bottom. The learned
r accurately indicates the relevant dimensions for majority of dimensions, with the exception of z6. Upon careful examination, this was
related to the choice of the traversal range, which was significantly different for this factor from the range of other factors.



Figure 16. Latent traversal in BF-VAE-0 on Celeb-A, where the learned prior variances α−1 shown at the bottom (the value 1.0 depicted
as the red dotted line). The learned αj for all j’s are away from 1, and the model identifies many relevant variables (in fact, all dimensions
affect image observation visually). Some latent dimensions visually evidently correspond to specific factors, e.g. z1 = frontal hair, z3 =
sunglasses, z4 = elevation, z5 = smiling, z6/z19 = azimuth, z9 = gender, z11 = hue, z15 = hair color, z17 = brightness, and z18 = lighting
(azimuth).



Figure 17. Latent traversal in BF-VAE-1 on Celeb-A, where the DOF (2âj) of the corrected prior p(zj) shown at the bottom. Except
dimensions z6 and z20, all dimensions correspond to some meaningful factors visually, and the DOFs are mostly relatively small, and most
of the proxy indicators are active. Some latent dimensions visually evidently correspond to specific factors, e.g. z2 = brightness, z3 =
elevation, z7 = lighting (azimuth), z8 = gender, z10 = hair color, z11 = hue, z12 = azimuth, z14 = frontal hair, z16 = smiling, z18 = sunglasses.



Figure 18. Latent traversal in BF-VAE-2 on Celeb-A, where the learned relevance vector r shown at the bottom. The model is able to
detect many relevant variables. Some latent dimensions visually evidently correspond to specific factors, e.g. z2/z4 = smiling, z5/z15 =
azimuth, z8/z17 = hue, z9 = baldness, z12/z13 = gender, z14 = elevation, z16 = sunglasses, z19 = frontal hair, and z20 = brightness.



Figure 19. Latent space traversal in BF-VAE-2 on Celeb-A. We train two BF-VAE-2 models with two different η values (η = ηS = ηH
large and small). (Left panel: strong factors) contains latent traversal results with four latent variables (two subjects for each) that are
detected (according to high rj) by both η small and large models. They correspond to (from top to bottom): gender, frontal hair, azimuth,
and brightness, which are considered as strong/major factors. (Right panel: weak factors) shows traversal with four other latent variables
that are detected (according to high rj) only by the small η model. They correspond to: smiling, sunglasses, elevation, and baldness, which
are considered as weak/minor factors.
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Figure 20. Disentanglement performance (Metric II) of F-VAE with MoG prior (Blue/Dashed) with different mixture orders (K) vs. BF-
VAE-2 (Red/Solid). Overall, the MoG overfits as K increases for all datasets.


