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This material details the implementation of the models used in the paper.

A. Embedding the proposed pooling into CNNs
We can straightforwardly replace the pooling layers explicitly embedded in CNNs, such as avg/max-pooling, with the

proposed pooling layer of the same pool size and the striding step size; see Fig. Aii&iii in which skip-pooling is replaced
with the proposed one. Those explicit pooling layers are found in such as VGG models [8] and the second layer (of max-
pooling) in ResNet models [3, 10]. On the other hand, in the ResNet models, the strided convolution implicitly contains a
pooling to downsize the feature map, and the proposed pooling is also applicable to it as follows.

A.1. Strided convolution

The strided convolution (Fig. Ai) is decomposed into the ordinary convolution without striding and the skip-pooling as
shown in Fig. Aii. The skip-pooling simply picks up one neuron activation in the receptive field and pass it to the next
layer; for example, (2, 2)-striding in convolution corresponds to the skip-pooling of 2 × 2 pool size with (2, 2) striding step
size, which picks up the top-left corner neuron activation in the 2 × 2 local region. The skip-pooling is then subject to the
replacement by the proposed pooling (Fig. Aiii).

A.2. ResBlock

The ResNet models [3, 10] stack the residual blocks, denoted by ResBlocks, containing several convolution layers and
a shortcut path. For downsizing a feature map, the ResBlock is implemented as shown in Fig. Bi which leverages strided
convolution operations in the both paths. By decomposing the strided convolutions, without changing the output, the Res-
Block results in the form that explicitly applies the skip-pooling (Fig. Bii). Then, the proposed pooling substitutes for the
skip-pooling lying at the last layer of the ResBlock as depicted in Fig. Biii.

B. Embedding the comparison modules into VGG
In Sec. 5.1.3, the proposed method is compared to the modules of NiN [7], ResNiN [7, 3] and squeeze-and-excitation

(SE) [4]. Those modules are embedded into the VGG model as shown in Fig. C. It should be noted that, for fair comparison,
(1) they are inserted just before the max-pooling and (2) they contain the same number of additional parameters by using the
same structure of MLP as ours (Fig. Aiii); the NiN and ResNiN applies the ReLU at the last activation in stead of sigmoid.

C. Training procedure
All the CNN models are implemented by using MatConvNet [9] and for fair comparison they are trained from scratch on

NVIDIA Tesla P40.
The VGG-based models [8, 6] are trained by following the training procedure presented in MatConvNet toolbox which

provides a good practice to train those models of high performance while requiring smaller number of training epochs; SGD
is applied to train the CNNs with the batch size of 64, the momentum of 0.9, the weight decay of 0.0005, and the learning
rate reducing from 0.1 to 0.0001 linearly in a log-scale over 20 training epochs.
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The ResNet-based models [3, 10] are also trained based on the approach presented in [3]; we apply the batch size of 256
and SGD with momentum of 0.9 and weight decay of 0.0001, while the learning rate starts from 0.1 and is divided by 0.1
every 30 epochs throughout 100 training epochs.

Practically, we can obtain the performance close to the reported ones [1, 2]; for VGG-16, ours are 27.94% (top-1) and
9.25% (top-5) while the reported ones are 28.3% (top-1) and 9.5% (top-5); for ResNet-50, ours are 23.53% (top-1) and 7.00%
(top-5) while the reported ones are 24.6% and 7.7% (top-5); for ResNeXt-50, ours are 22.69% (top-1) and 6.65% (top-5)
while the reported ones are 22.60% (top-1) and 6.49% (top-5).
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Figure A. Strided convolution of (2, 2) step size is replaced by the proposed pooling method. ’/2’ indicates the striding step size of (2, 2)
in the convolution or pooling operation in which the filter or pooling size is shown in the form of ’∗ × ∗’. The size of feature map passed
through layers is also denoted by ’Height×Width×Channel’. The strided convolution (i) corresponds to the form (ii) explicitly using
the skip pooling. The parametric pooling in (iii) is implemented such as by Eq.(7) (in the submitted paper) with ρ = 0. Note that the
Batch-Normalization [5] is applied right after each convolution layer.
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Figure B. ResBlock that downsizes an input feature map is modified by embedding the proposed pooling. In (ii, iii), the gray-colored box
indicates the modified or added layer, compared to the original architecture (i).
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Figure C. Comparison modules (Sec. 5.1.3) which contain the same number of additional parameters as ours (Fig. Aiii). Those modules
are inserted just before the max-pooling since they do not render pooling functionality.
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