
Supplementary Material for
Global Feature Guided Local Pooling

Takumi Kobayashi
National Institute of Advanced Industrial Science and Technology

1-1-1 Umezono, Tsukuba, Japan
takumi.kobayashi@aist.go.jp

This material details the implementation of the models used in the paper.

A. Embedding the proposed pooling into CNNs
We can straightforwardly replace the pooling layers explicitly embedded in CNNs, such as avg/max-pooling, with the

proposed pooling layer of the same pool size and the striding step size; see Fig. Aii&iii in which skip-pooling is replaced
with the proposed one. Those explicit pooling layers are found in such as VGG models [8] and the second layer (of max-
pooling) in ResNet models [3, 10]. On the other hand, in the ResNet models, the strided convolution implicitly contains a
pooling to downsize the feature map, and the proposed pooling is also applicable to it as follows.

A.1. Strided convolution

The strided convolution (Fig. Ai) is decomposed into the ordinary convolution without striding and the skip-pooling as
shown in Fig. Aii. The skip-pooling simply picks up one neuron activation in the receptive field and pass it to the next
layer; for example, (2, 2)-striding in convolution corresponds to the skip-pooling of 2 × 2 pool size with (2, 2) striding step
size, which picks up the top-left corner neuron activation in the 2 × 2 local region. The skip-pooling is then subject to the
replacement by the proposed pooling (Fig. Aiii).

A.2. ResBlock

The ResNet models [3, 10] stack the residual blocks, denoted by ResBlocks, containing several convolution layers and
a shortcut path. For downsizing a feature map, the ResBlock is implemented as shown in Fig. Bi which leverages strided
convolution operations in the both paths. By decomposing the strided convolutions, without changing the output, the Res-
Block results in the form that explicitly applies the skip-pooling (Fig. Bii). Then, the proposed pooling substitutes for the
skip-pooling lying at the last layer of the ResBlock as depicted in Fig. Biii.

B. Embedding the comparison modules into VGG
In Sec. 5.1.3, the proposed method is compared to the modules of NiN [7], ResNiN [7, 3] and squeeze-and-excitation

(SE) [4]. Those modules are embedded into the VGG model as shown in Fig. C. It should be noted that, for fair comparison,
(1) they are inserted just before the max-pooling and (2) they contain the same number of additional parameters by using the
same structure of MLP as ours (Fig. Aiii); the NiN and ResNiN applies the ReLU at the last activation in stead of sigmoid.

C. Training procedure
All the CNN models are implemented by using MatConvNet [9] and for fair comparison they are trained from scratch on

NVIDIA Tesla P40.
The VGG-based models [8, 6] are trained by following the training procedure presented in MatConvNet toolbox which

provides a good practice to train those models of high performance while requiring smaller number of training epochs; SGD
is applied to train the CNNs with the batch size of 64, the momentum of 0.9, the weight decay of 0.0005, and the learning
rate reducing from 0.1 to 0.0001 linearly in a log-scale over 20 training epochs.

1



The ResNet-based models [3, 10] are also trained based on the approach presented in [3]; we apply the batch size of 256
and SGD with momentum of 0.9 and weight decay of 0.0001, while the learning rate starts from 0.1 and is divided by 0.1
every 30 epochs throughout 100 training epochs.

Practically, we can obtain the performance close to the reported ones [1, 2]; for VGG-16, ours are 27.94% (top-1) and
9.25% (top-5) while the reported ones are 28.3% (top-1) and 9.5% (top-5); for ResNet-50, ours are 23.53% (top-1) and 7.00%
(top-5) while the reported ones are 24.6% and 7.7% (top-5); for ResNeXt-50, ours are 22.69% (top-1) and 6.65% (top-5)
while the reported ones are 22.60% (top-1) and 6.49% (top-5).

(i) Strided convolution (ii) Representation by skip pooling (iii) Ours

3x3 conv, /2

ReLU

3x3 conv

2x2 Skip Pool, /2

ReLU

1x1 conv

ReLU

1x1 conv

Sigmoid

Global Avg Pool

2x2 Parametric Pool, /2

3x3 conv

ReLU

GFGP

Figure A. Strided convolution of (2, 2) step size is replaced by the proposed pooling method. ’/2’ indicates the striding step size of (2, 2)
in the convolution or pooling operation in which the filter or pooling size is shown in the form of ’∗ × ∗’. The size of feature map passed
through layers is also denoted by ’Height×Width×Channel’. The strided convolution (i) corresponds to the form (ii) explicitly using
the skip pooling. The parametric pooling in (iii) is implemented such as by Eq.(7) (in the submitted paper) with ρ = 0. Note that the
Batch-Normalization [5] is applied right after each convolution layer.

(i) ResBlock (ii) Representation by skip pooling (iii) Ours

1x1 conv, /2 1x1 conv

3x3 conv, /2

ReLU

ReLU

1x1 conv

ReLU

1x1 conv

ReLU

ReLU

1x1 conv

3x3 conv

1x1 conv

ReLU

2x2 Skip Pool, /2

1x1 conv

ReLU

1x1 conv

Sigmoid

Global Avg Pool

2x2 Parametric Pool, /2

ReLU

1x1 conv

ReLU

ReLU

1x1 conv

3x3 conv

1x1 conv

GFGP

Figure B. ResBlock that downsizes an input feature map is modified by embedding the proposed pooling. In (ii, iii), the gray-colored box
indicates the modified or added layer, compared to the original architecture (i).

2



(i) Original in VGG (ii) NiN (iii) ResNiN (iv) SE

3x3 conv

2x2 Max-Pool, /2

ReLU

3x3 conv

2x2 Max-Pool, /2

ReLU

1x1 conv

ReLU

1x1 conv

ReLU

NiN

3x3 conv

ReLU

2x2 Max-Pool, /2

1x1 conv

ReLU

ResNiN

1x1 conv

ReLU

1x1 conv

ReLU

1x1 conv

Sigmoid

Global Avg Pool

Scale

3x3 conv

ReLU

SE

2x2 Max-Pool, /2

Figure C. Comparison modules (Sec. 5.1.3) which contain the same number of additional parameters as ours (Fig. Aiii). Those modules
are inserted just before the max-pooling since they do not render pooling functionality.

References
[1] http://www.vlfeat.org/matconvnet/pretrained/.
[2] https://github.com/albanie/mcnResNeXt.
[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, pages 770–778,

2016.
[4] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In CVPR, pages 7132–7141, 2018.
[5] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift.

Journal of Machine Learning Research, 37:448–456, 2015.
[6] Takumi Kobayashi. Analyzing filters toward efficient convnets. In CVPR, pages 5619–5628, 2018.
[7] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. In ICLR, 2014.
[8] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556,

2014.
[9] Andrea Vedaldi and Karel Lenc. MatConvNet – convolutional neural networks for matlab. In ACM MM, 2015.

[10] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transformations for deep neural
networks. In CVPR, pages 5987–5995, 2017.

3

http://www.vlfeat.org/matconvnet/pretrained/
https://github.com/albanie/mcnResNeXt

