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The goal of this Supplementary Material is to pro-
vide additional details that were not included in the main
manuscript due to space constraints. In Section 1 we present
additional quantitative results. Section 2 aims to provide
qualitative results for a wide range of settings, including:
visualization from novel viewpoints, comparison with the
approach of Kanazawa et al. [6], comparison of the “un-
paired” version and the version that has access to 3D ground
truth, etc. Then, in Section 3, we provide more details about
the training procedure. Finally, in Section 4, we discuss the
evaluation metrics used to report results.

1. Further quantitative evaluation

In this Section we provide more quantitative results of
our approach that complement and extend the results found
in the main manuscript.

Different dictionary: As we mentioned in Section 3.5
of the main manuscript, we can follow different strategies
to initially populate with SMPLify fits the dictionary our
approach uses to keep track of the best fits during training.
For the results used in the main empirical evaluation, we
use a network similar to Martinez et al. [8] trained on CMU
MoCap data [2, 12] and we regress an initial pose from the
given 2D keypoints. SMPLify is initialized with this pose
and provides the fit we add in the dictionary. Alternatively,
we can run SMPLify from the mean pose, without requiring
an external pose regressor. Here, we provide results for this
setting as well. In general, as we can see in Table 1, perfor-
mance remains similar even if we start with this dictionary.
More importantly, our in the loop optimization is responsi-
ble for consistent improvement in the results, compared to
using only the initial dictionary of static fits. This experi-
ment offers additional evidence, that SPIN can improve the
performance of the network, regardless of the quality of the
initial (non-perfect) dictionary we use in our approach.

Fitting at test time: SPIN leverages a tight collaboration
between the optimization-based and the regression-based
approach at training time, to improve the performance of
a deep regressor. Other recent approaches, e.g., [3, 10, 11]

3DPW LSP (masks) MPI-INF

static fits (from mean pose init) 66.2 90.99% 71.4
in the loop (from mean pose init) 62.3 91.85% 68.1
static fits (from [8] init) 66.3 91.07% 70.1
in the loop (from [8] init) 59.2 91.83% 67.5

Table 1: Comparison of the proposed in the loop optimization,
with vanilla training using the static dictionary of fits we use to
initialize SPIN. The static fits are the result of SMPLify initialized
with the mean pose, or the regressed pose value of a lifting network
similar to the one proposed by Martinez et al. [8]. The numbers
for 3DPW and MPI-INF are reconstruction errors in mm, while
the numbers for LSP are mask segmentation accuracies.

3DPW LSP (masks)

regressor 59.2 91.83%
regressor + fit 66.3 89.93%

Table 2: Comparison between the mesh regressed by our network
(“regressor”) with the reconstruction we get after applying a post-
processing to this mesh by fitting it to predicted 2D joints (“regres-
sor+fit”). Since the predicted joints can be noisy, we see that the
fit accuracy can potentially decrease by using this post-processing.
The numbers for 3DPW are reconstruction errors in mm, while the
numbers for LSP are mask segmentation accuracies.

have also investigated the collaboration of the paradigms,
focusing on test time inference. This is an option we also
investigated. However, we observed that a potential prob-
lem of this strategy is that often the predicted 2D joints can
be inaccurate at test time and eventually reduce the predic-
tion quality. We observed that this is the case for different
datasets and we report our findings in Table 2. In contrast
to that, at training time, we have access to ground truth 2D
joints, so we can consistently improve accuracy compared
to the regressed shape.

Dictionary improvement: To more explicitly discover
the level of improvement of the fits we use for training, we
compare our initial set of fits (dictionary at the beginning of



Human3.6M MPI-INF-3DHP

initial dictionary 72.5 83.4
final dictionary 60.5 74.5

Table 3: Comparison between the accuracy of the fits in the ini-
tial and the final dictionary, for the training set of Human3.6M
and MPI-INF-3DHP. The results are mean reconstruction errors in
mm. As expected, the fits we use for training improve over time, so
it is natural to lead to a more accurately trained regressor network.

Rec. Error

Training in the loop (from mean pose init) 62.3
Training with final dict (from mean pose init) 62.2

Training in the loop (from [8] init) 59.2
Training with final dict (from [8] init) 59.9

Table 4: Comparison of our in the loop training with vanilla train-
ing using the final dictionary recovered by our in the loop ap-
proach. The numbers are mean reconstruction errors in mm on the
3DPW dataset. Performance is almost identical in both cases. This
implies that the benefit from SPIN comes explicitly from recover-
ing more accurate fits, and not because the gradual improvement
of supervision can interfere with the training procedure.

training) with the final fits recovered when we finish our in
the loop approach (dictionary at the end of training). The
results for Human3.6M and MPI-INF-3DHP are presented
in Table 3. These results correspond to the “unpaired” set-
ting, where we do not have explicit 3D ground truth and we
can only start with inaccurate fits. As expected, we observe
an improvement of the fits quality in the final dictionary,
compared to the initial fits. These improved fits help our
network to be more accurate at the end of our in the loop
training.

Effect of improved fits: To demonstrate the benefit of
using the improved ground truth shapes that SPIN provides,
we also consider training a network using only the updated
shapes that are included in the dictionary after the end of
training. This way, we can demonstrate that the network
performance improves explicitly because the ground truth
shapes are more accurate, and not because the labels im-
prove in a gradual manner during training (which could in-
terplay with the idiosyncrasies of neural network training).
The results for the 3DPW dataset are provided in Table 4.
Considering the small difference between the results of the
two models, we deduce, that the improved quality of the fits
we recover during training is what primarily contributes to
the improved performance of our in the loop models.

2. Further qualitative evaluation

In this Section we provide more qualitative results of our
approach, that were not included in the main manuscript due

to space constraints.
Side views: Figure 5 of the main manuscript provides

a variety of qualitative results of our approach for all the
datasets involved in our quantitative evaluation. Here we
provide even more examples, with the addition of visual-
izations from novel viewpoints, which is a typical way to
evaluate qualitatively 3D human pose estimation methods.
These additional visualizations including novel viewpoints
have been collected in Figure 1.

SMPLify failures: In the main manuscript (Subsection
3.5), we discuss the typical failure modes of SMPLify. Here
we provide more visual results of these failures in Figure 2.
These errors motivate our decision to avoid training with
some very bad fits that SMPLify can provide to our net-
work. From inspection, these failures include wrong orien-
tation of the body and/or extreme shape parameters. In the
second case of extreme shape parameters, we observed that
the camera translation is typically off (estimated to be too
close or too far), because the assumptions of [1] are vio-
lated (i.e., the person is not standing parallel to the image
plane). It is important to clarify though, that these failures
happen when the optimization starts from the mean pose,
and results are typically improved over the course of train-
ing, when the SMPLify routine is initialized with a reason-
able pose estimate from the network.

Comparison with HMR [6]: Based on the results of
the main manuscript, our closest competitor is the HMR
approach of Kanazawa et al. [6]. To provide additional
intuition over the benefits of our approach with respect
to [6], (beyond the quantitative results), here we include
further qualitative comparison with our approach, by apply-
ing HMR and our network on the same images. Example
reconstruction from both approaches are presented in Fig-
ure 3. Based on this comparison, we identify that although
HMR is quite robust, it has more issues with estimating the
global orientation correctly, while it is less accurate for the
body extremities. In contrast, our network is trained with
successful SMPLify fits, which tend to get these cases cor-
rectly, so we observe more successful reconstructions also
from a qualitative point of view.

“Paired” vs “Unpaired” supervision: Although for our
best models we do use examples where 3D ground truth
is available for training (e.g., Human3.6M and MPI-INF-
3DHP), our approach is applicable even when we have ac-
cess to no image with corresponding 3D ground truth. Here,
we provide a qualitative comparison between these two
training settings. The corresponding results are presented
in Figure 4. Interestingly, our “unpaired” network produces
very similar results to the network that has been trained with
limited access to 3D ground truth. Significant differences
can be observed only in cases with very challenging poses,
or in cases with ordinal depth ambiguities, where SMPLify
itself is also prone to failure.



Image Our result Novel view 1 Novel view 2 Image Our result Novel view 1 Novel view 2

Figure 1: Successful results of SPIN. For each example from left to right: Image, Our reconstruction result in the camera frame, Our
reconstruction result from a novel view (top view), Our reconstruction result from a novel view (side view).

3. Training details

Our model follows the architecture of Kanazawa et
al. [6]. The only difference is that instead of using an axis-
angle representation for the 3D rotations (as done by [6]),
we instead change the output to regress the representation of
Zhou et al. [14]. Our models were trained using the Adam

optimizer with a batch size of 64, and the learning rate set
to 3e− 5. We did not use learning rate decay. Training with
SPIN lasts for 300k iterations. The model without access
to any form of 3D ground truth (“unpaired”) was initial-
ized from a model pretrained on ImageNet. The model with
limited access to 3D ground truth (“paired”) was initialized
with a model pretrained on Human3.6M [4] using full 3D



Image Result Image Result

Figure 2: Erroneous reconstructions of SMPLify. Failures typ-
ically occur because of errors in the orientation of the body or
specific parts (first and second row), or in the estimated shape pa-
rameters (third and fourth row). In the second case, the distance
from the camera has been heavily over- or under-estimated, which
can produce extreme values for the shape parameters.

pose and shape ground truth. Pretraining in this case was
useful, such that the model provides better initial 3D shape
estimates for the iterative fitting. The weights for the losses
on the SMPL pose and beta parameters were set to 1 and
0.001 respectively. The loss weights on the 2D and 3D key-
points were set to 5. We did not use a loss at the mesh level.
All training losses were then scaled by a factor of 60.

The SMPLify optimization in the loop is done using the
Adam optimizer in batch mode. The step size was set to
1e − 2 and and the maximum number of iterations to 50.
In these conditions, for a batch size of 64 images, the opti-
mization takes about 3 seconds on a GeForce 1080Ti GPU,
allowing us to include it within the training loop.

4. Evaluation metrics
In the main manuscript, we report results using a vari-

ety of different metrics, always following the literature and
computing the metrics the same way that competing ap-
proaches do. In this Section, we provide more details about
the relevant metrics and give pointers to previous works that
use or define them.

Rec. Error: In Tables 1 and 3 of the main manuscript we
report results on 3DPW and Human3.6M respectively us-
ing the Reconstruction error. This error computes the mean
Euclidean error over all the joints after aligning the predic-
tion with the ground truth 3D pose through Procrustes align-

Image HMR Ours

Figure 3: Comparison of SPIN with HMR [6] on the LSP
dataset [5]. From left to right: Input image, HMR result, Our
result. HMR failures include errors in the estimation of the global
orientation and the pose of the extremities (arms and legs). In con-
trast, SPIN is more robust in these cases, because adding the opti-
mization in the training loop, provides more accurate supervision
to the network.

ment. A definition of this error is given formally in [13]
Segmentation: In Table 2 of the main manuscript we

evaluate 3D shape implicitly through mesh reprojection us-



Image Paired Paired (top) Paired (side) Unpaired Unpaired (top) Unpaired (side)

Figure 4: Comparison of “unpaired” model (no access to images with 3D ground truth) with the “paired” version (limited access to images
with 3D ground truth). For each row from left to right: Image, Reconstruction result of “paired” model in the camera frame, Reconstruction
result of “paired” model from top view, Reconstruction result of “paired” model from side view, Reconstruction result of “unpaired” model
in the camera frame, Reconstruction result of “unpaired” model from top view, Reconstruction result of “unpaired” model from side view.
Interestingly, in most cases the two versions recover similar human shapes. Important differences can only be observed in the presence of
very challenging poses.



ing segmentation accuracy metrics. We report accuracy
scores and f1 scores when considering only the silhouette
(FB - Foreground/Background case), and also considering
Part segmentation. The evaluation on LSP using these seg-
mentation metrics is originally done by Lassner et al. [7].

MPI-INF-3DHP evaluation: The evaluation on MPI-
INF-3DHP [9] in Table 4 of the main manuscript includes
a variety of metrics reported with or without rigid align-
ment, i.e., with or without aligning our prediction with
the ground truth using Procrustes alignment. In this case,
MPJPE stands for the mean Euclidean error over all the
joints. PCK is the percentage of correctly localized key-
points, where a keypoint is considered to be correctly local-
ized if its Euclidean error is below a specific threshold (here
150mm). Finally AUC stands for Area Under the Curve
and is computed as in [9], by estimating the PCK for a vari-
ety of thresholds, from 0 to 150, with a step equal to 5.
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