
GAN-Tree: An Incrementally Learned Hierarchical Generative

Framework for Multi-Modal Data Distributions

Supplementary Material

Introduction

We present a cluster assignment algorithm which is used in the GAN-Tree framework to assign

cluster labels to new test samples. We also show further splits of GAN-Tree trained on the ImageNet

[4] dataset and discuss the flexibility of GAN-Tree which allows it to model even outlier clusters.

Following this, we show a step by step implementation of the iGAN-Tree incremental training

algorithm (Algorithm 4 of the main paper). To encourage reproducible research, we will make the

code available publicly.

Unsupervised Classification using GAN-Tree

After obtaining a fully-trained GAN-Tree, the hierarchical tree framework is used to assign

cluster label or object label category for a test sample x satisfying the input training distribution.

The entire tree is traversed, starting from the root node to one of the leaf nodes, following the

maximum inference probability given by the encoder network E
(n)
post(x) at each tree node n (see

Algorithm 1). The nodes traversed by x at different levels of the GAN-Tree is also utilized to

assign hierarchical categorization of the sample x. This demonstrates the advantage of the inherent

top-down divisive clustering setting of GAN-Tree as compared to other multi-modal [2; 5] or multi-

generator [1; 3] approaches. We achieve 96% accuracy on the MNIST test-set classification in a

fully unsupervised setting.

Algorithm 1 Assign Label procedure for cluster label assignment of a new sample x, given a

GAN-Set G from GAN-Tree T
1: input: x, G, T

2: k ← 0 . index of the root node of T

3: while k /∈ G do

4: z ← E
(k)
post(x)

5: k ← argmax (p(i|z)) . i ∈ children(k)

6: return k

1



Figure 1: Splits of GAN-Tree trained on ImageNet.

Further Splits of GAN-Tree Trained on ImageNet

Figure 1 shows the splits obtained by GAN-Tree trained on the ImageNet [4] dataset. The root

node is split into images portraying scenery or having objects on a darker background (left child

node) and into images portraying greenery or objects on a lighter background (right child node).

A further split of the left child node of the root is primarily into images with scenery (left) and

those with animals (right). A further split of the right child node of the root is into images with

greenery (left) and those with objects on a light-colored background (right).

Flexibility in Prior Probability Assignment

The prior probabilities defined for each node n can be updated manually depending on the

requirement. For instance, consider a curated MNIST dataset with an equal number of samples for

all digit classes except a single class consisting of 50% fewer samples as compared to others. In such

2



a case, the proposed GAN-Tree framework has a leaf node dedicated to that particular class with

a reduced number of samples. However, during generation, samples are taken from the leaf nodes

with uniformly distributed prior probabilities, even in the presence of data imbalance in the actually

given training set. We observe decorated quality of generation for samples of that particular class

despite the unavailability of many samples to approximate the corresponding distribution. This

demonstrates the effectiveness of GAN-Tree to model outlier clusters in data distribution even with

very few numbers of input samples.

Step-by-Step Implementation of iGAN-Tree

We show a step by step implementation of the iGAN-Tree Incremental Training Algorithm

(Algorithm 4 of the main paper, copied to Algorithm 2 for reference) for adding the digit class 5

to a GAN-Tree trained on MNIST digit classes 0-4. The procedure is portrayed in Figure 2.

• The Base GAN-Tree T , which has been trained on MNIST digit classes 0 to 4, is given along

with the new Data Sample set D’, which consists of the MNIST digit class 5 (see Fig. 2A).

Algorithm 2 Incremental GAN-Tree Training

1: input: GAN-Tree T , New Data Sample set D′

2: i← index(root(T ))

3: while i is NOT a leaf node do

4: l← left(i); r ← right(i)

5: if Avg(p
(l)
x (D′)) ≥ p(l)z (µ(l) + dσ0

) then i← l

6: else if Avg(p
(r)
x (D′)) ≥ p(r)z (µ(r) + dσ0

) then i← r

7: else break

8: Here, i is the current node index

9: j ← NewId() (new parent index)

10: k ← NewId() (new child index)

11: par(k) ← j; par(j) ← par(i); par(i) ← j

12: if i = index(root(T )) then

13: root(T ) ← j; left(j) ← i; right(j) ← k

14: else if i was the left child of its previous parent then

15: left(par(j)) ← j; left(j) ← i; right(j) ← k

16: else

17: right(par(j)) ← j; left(j) ← k; right(j) ← i

18: Create networks G(k), D(k) with random initialization

19: Train E(j), G(k) and D(k) with Lrecon and Ladv
20: E(par(j)) ← copy(E(par(i)))

21: G(j) ← copy(G(i)); D(j) ← copy(D(i)); i← par(i)

22: while GN (i) is not root(T ) do

23: IncrementalNodeTrain(i); i← par(i)
end while

24: Train GN (i) with GAN Training Procedure on D’ and generated samples from Terminal GAN-Set.

3



A BGN[0](0)

GN[0](5) GN[0](6)

GN[0](2)GN[0](1)

GN[0](3) GN[0](4)

Base GAN-Tree

{ 0, 1, 2, 3, 4 }

{ 2, 4 }{ 1 }

{ 1, 2, 4 }

{ 3 }

{ 0, 2, 3 }

{ 0, 2 }

GN[0](0)

GN[0](5) GN[0](6)

GN[0](2)GN[0](1)

GN[0](3) GN[0](4)

Steps 2-8

{ 0, 1, 2, 3, 4 }

{ 2, 4 }{ 1 }

{ 1, 2, 4 }

{ 3 }

{ 0, 2, 3 }

{ 0, 2 }

C

Steps 9-21

GN[0](0)

GN[1](5) GN[0](6)

GN[0](2)GN[0](1)

GN[0](3) GN[0](4)

GN[1](n1)GN[0](5)

{ 0, 1, 2, 3, 4 }

{ 2, 4 }{ 1 }

{ 1, 2, 4 }

{ 3 }

{ 0, 2, 3 }

{ 0, 2 }

{ 3 } { 5 }

Steps 22-23

GN[0](0)

GN[1](5) GN[0](6)

GN[1](2)GN[0](1)

GN[0](3) GN[0](4)

GN[1](n1)GN[0](5)

{ 0, 1, 2, 3, 4 }

{ 2, 4 }{ 1 }

{ 1, 2, 4 }

{ 3, 5 }

{ 0, 2, 3 }

{ 0, 2 }

{ 3 } { 5 }

Steps 22-23

GN[1](0)

GN[1](5) GN[0](6)

GN[1](2)GN[0](1)

GN[0](3) GN[0](4)

GN[1](n1)GN[0](5)

{ 0, 1, 2, 3, 4 }

{ 2, 4 }{ 1 }

{ 1, 2, 4 }

{ 3, 5 }

{ 0, 2, 
3, 5 }

{ 0, 2 }

{ 3 } { 5 }

Step 24

GN[1](0)

GN[1](5) GN[0](6)

GN[1](2)GN[0](1)

GN[0](3) GN[0](4)

GN[1](n1)GN[0](5)

{ 0, 1, 2, 3, 4, 5 }

{ 2, 4 }{ 1 }

{ 1, 2, 4 }

{ 3, 5 }

{ 0, 2,
 3, 5 }

{ 0, 2 }

{ 3 } { 5 }

D E F

Figure 2: Incremental GAN-Tree training algorithm procedure for a Base GAN-Tree T trained on

MNIST digit classes 0-4 and new Data Sample D’ which consists of MNIST digit class 5.

4



• The procedure for seeking the apt position to insert the new child node is run in a top-down

fashion (lines 2-8 of Algorithm 2). It starts with the root node and checks which child node

of the current node best models the data samples from D’. After selecting a child node, this

step is recursed on this selected node until a leaf node is reached or its children cannot model

the new data samples appropriately. The position at which this seek procedure stops is where

the new child node is to be inserted. The seek procedure path ends at GN [0](5) for the case

taken, and is highlighted in dark gray (see Fig. 2B).

• Once the position at which the new child node is to be inserted is found, two new nodes are

created (lines 9-11 in Algorithm 2): i) a parent node with ID j (GN [1](5) in the case taken),

and ii) a child node with ID k which will model only D’ (GN [1](n1) in the case taken). The

node at which the seek procedure ends (GN [0](5) for the case taken) becomes the child of the

new parent node, according to whichever child it was of its previous parent, so as to maintain

the same prior distribution (lines 12-17 in Algorithm 2). The child node is then trained after

which the new parent node is assigned weights (lines 18-21 in Algorithm 2). The new parent

node is highlighted in orange, the new child node in red, and the trained nodes in red text

(see Fig. 2C).

• Once the new child node has been trained, the ancestor nodes are trained recursively (lines

22-23 of Algorithm 2), according to the Incremental Node Training Algorithm (given in Al-

gorithm 3 of main paper). The recursive steps are shown in Fig. 2D and Fig. 2E. The node

after retraining is highlighted in red text.

• Finally, the root is retrained with the GAN Training Procedure on samples from D’ and the

samples generated from the GAN-Set formed by the leaf nodes (line 24 in Algorithm 2). The

GAN-Tree structure after the root node training is shown in Fig. 2F.

References

[1] Arnab Ghosh, Viveka Kulharia, Vinay Namboodiri, Philip HS Torr, and Puneet K Dokania. Multi-agent

diverse generative adversarial networks. In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018.
[2] Swaminathan Gurumurthy, Ravi Kiran Sarvadevabhatla, and R Venkatesh Babu. Deligan: Generative

adversarial networks for diverse and limited data. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017.
[3] Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung. Mgan: Training generative adversarial nets

with multiple generators. In International Conference on Learning Representations, 2018.
[4] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,

Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition

challenge. International journal of computer vision, 115(3):211–252, 2015.
[5] Ilya O Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, and Bernhard Schölkopf.

Adagan: Boosting generative models. In Advances in Neural Information Processing Systems, 2017.

5


	Introduction
	Unsupervised Classification using GAN-Tree
	Further Splits of GAN-Tree Trained on ImageNet
	Flexibility in Prior Probability Assignment
	Step-by-Step Implementation of iGAN-Tree 

