
6. Supplementary Material

6.1. Problem

The current state-of-the-art methods for text-to-image synthesis normally have two sources of randomness: one for the
text embedding variability, and the other (noise z given a normal distribution) capturing image variability. Our empirical
investigation of some previously published methods reveals that those two sources can overlap: due to the randomness in
the text embedding, the noise vector z then does not meaningfully contribute to the variability nor the quality of generated
images, and can be discarded. This is illustrated qualitatively in Figure 8 and quantitatively in Figure 9.
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Figure 8: Generated images from previous state-of-the-art method (Baseline), fixing the noise vector z in the baseline method (Fix z) and
removing the noise vector z in the baseline method (Remove z). The removal of the randomness from the noise source by either fixing z
or removing z does not affect the variability nor the quality of generated images, indicating that the noise vector z has no contribution in
the synthesis process.

Figure 9: Inception score (left axis, top curves) and FID (right axis, bottom curves) for the baseline method, its variants (fix z and remove
z) and our method on Oxford-102 (left) and CUB (right) datasets. Each curve is the mean of three independent experiments. Higher
inception score and lower FID mean better performance.



6.2. Implementation details

For the encoderGz,c, we first extract a 1024-dimension feature vector from a given image x (note that the text embeddings
are also 1024-dimension vectors), and apply the reparameterization trick to sample ẑ and ĉ. To reduce the complexity of our
models, we use the same discriminator for both Dx,z and Dx,c in our experiments, thus re-denoted as D(x,z)/(x,c), and the
weights are shared between Dx and Dx,ϕt

. By default, λ = 4. For the training, we iteratively train the discriminators Dx,ϕt
,

D(x,z)/(x,c), Dx,x′ and then the generators Gx, Gz,c for 600 epochs (Oxford-102 and CUB) or 200 epochs (COCO), with
Adam optimization [15]. The initial learning rate is set to 0.0002 and decreased to half of the previous value for every 100
epochs.

6.3. Datasets

The Oxford-102 dataset [23] contains 8,189 flower images from 102 different categories, and the CUB dataset [29] con-
tains 11,788 bird images belonging to 200 different categories. For both datasets, each image is annotated with 10 text
descriptions provided by [25]. Following the same experimental setup as used in previous works [26, 32, 35], we preprocess
and split both datasets into disjoint training and test sets: 82 + 20 classes for the Oxford-102 dataset and 150 + 50 classes
for the CUB dataset. For the COCO dataset [20], we use the 82,783 training images and the 40,504 validation images for our
training and testing respectively, with each image given 5 text descriptions. We also use the same text embeddings pretrained
by a char-CNN-RNN encoder [25].

6.4. Evaluation metrics

Three quantitative metrics are used to evaluate our method: Inception score [28], Fréchet inception distance (FID) [10]
and Visual-semantic similarity [35]. Inception score focuses on the diversity of generated images. We compute inception
score using the fine-tuned inception models for both Oxford-102 and CUB datasets provided by [32]. FID is a metric
which calculates the distance between the generated data distribution and the real data distribution, through the feature
representations of the inception network. Similar to previous works [32, 35], we generate∼ 30,000 samples when computing
both inception score and FID. Visual-semantic similarity measures the similarity between text descriptions and generated
images. We train our neural distance models for 64×64 resolution images similar to [35].

6.5. Choices of reconstruction loss

In addition to the adversarial loss Vcycle(D,G) defined in Section 3.3, we also examine the model performance by using
either l1 or l2 loss for cycle-consistency. However, the degradation is unexpectedly dramatic. Figure 10 shows the generated
images using adversarial loss compared with those using l2 loss, and it is clear that the latter gives much blurrier images. A
similar effect is observed when using l1 loss. The quantitative results are shown in Table 2.

Figure 10: Examples of generated images by using either adversarial loss or l2 loss for the cycle consistency.

6.6. Visual-semantic similarity

Visual-semantic similarity measures the similarity between text descriptions and generated images. We train our neural
distance models for 64×64 resolution images similar to [35] for 500 epochs. In the testing phase, we generate ∼ 30,000
images at 64×64 resolution and compute the visual-semantic similarity scores based on the trained neural distance models.
The real images are also used to compute the visual-semantic similarity scores as the ground truth. Table 3 shows the
comparison of the baseline method, our method and the ground truth. Similar to inception score and FID, we provide mean
scores for visual-semantic similarity metric based on three independent experiments at five different epochs (600, 580, 560,
540 and 520). As shown in the table, our method achieves comparable results for visual-semantic similarity compared to the
baseline method.



Method
Dataset

Oxford-102 CUB

Ground Truth 0.422 ± 0.117 0.382 ± 0.154

HDGAN mean* 0.248 ± 0.136 0.263 ± 0.164
Ours mean* 0.246 ± 0.139 0.251 ± 0.168

* mean calculated on three experiments at five different epochs

Table 3: Visual-semantic similarity.

6.7. Relation to previous work on the separation of content and style for text-to-image synthesis

Reed et al. [26] have also investigated the separation of content and style information. However, their learning of style
is detached from the text-to-image framework, and the parameters of the image generator are fixed during the style learning
phase. Their concept of content and style separation is therefore not actually leveraged during the training of the image
generator. In addition, their work uses a deterministic text embedding, which cannot plausibly cover all content variations,
and as a result, one can assume that information belonging to the content could severely contaminate the style. In our work,
we learn style from the data itself as opposed to the generated images. This allows us to learn style while updating the
generator and effectively incorporate style information from the data into the generator.

6.8. More examples on text-to-image generation

We provide more text-to-image generation examples in Figure 11. For each method, we generate three groups of images
given a certain text description: 1) use a fixed z and sample c from p(c) to show the role of c in the generated images; 2)
use a fixed c and sample z from p(z) to examine how z contributes to image generation; 3) sample both z and c from p(z)
and p(c) respectively to evaluate the overall performance. Note that p(c) is conditioned on the text description as defined in
Section 3.1. As seen in Figure 11, our model generates better-quality images and gives more meaningful variability in style
compared to the baseline, when we keep the content information constant and only sample from the latent variable z. This is
not surprising due to the fact that the generator has learned to match changes in z with style. Note that for most of the ‘easy’
tasks (images that are easy for the generator to synthesize), visual comparison does not reveal significant differences between
the baseline and our method.



Figure 11: Examples of generated images on Oxford-102 dataset compared with the baseline method using three different strategies: 1)
use a fixed z and sample c from p(c) to show the role of c in the generated images; 2) use a fixed c and sample z from p(z) to examine
how z contributes to image generation; 3) sample both z and c from p(z) and p(c) respectively to evaluate the overall performance. Note
that p(c) is conditioned on the text description. The conditioning text descriptions and their corresponding images are shown in the left
column.



6.9. More examples on disentanglement analysis

In this subsection, we provide more results and discussions on the disentanglement analysis with the Bernoulli constraint
(see Section 4.5). Section 6.9.1 gives more interpolation results based on inferred content (ĉ) and inferred style (ẑ); Sec-
tion 6.9.2 and Section 6.9.3 respectively show style transfer results based on real images and synthetic images with specifically
engineered styles.

6.9.1 Interpolations on content and style

For interpolations, we provide our trained inference model with two images: the source image and the target image, to extract
their projections ẑ and ĉ in the latent space. As shown in Figure 12, Figure 13, Figure 14 and Figure 15, the rows correspond
to reconstructed images of linear interpolations in ĉ from source to target image and the same for ẑ as displayed in columns.
The source images are shown in the top left corner and the target images are shown in the bottom right corner. The figures
demonstrate that our proposed dual adversarial inference is able to separate the learning of content and style, and moreover,
the learned style ẑ indeed represents certain meaningful information. In particular, Figure 12 shows an example of style
controlling the number of petals, and the pose of flowers from facing towards upright to facing front; Figure 13 shows a
smooth transition of style from a single flower to multiple flowers; Figure 14 shows the changing of the bird pose from sitting
to flying; and finally Figure 15 shows the switch of the bird pose from facing towards right to facing towards left and the
emergence of tree branches in the background.
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Figure 12: Example of inferred style controlling the number of petals, and the pose of flowers from facing towards upright to facing front.
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Figure 13: Example of inferred style controlling the number of flowers, from a single flower to multiple flowers.
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Figure 14: Example of inferred style controlling the pose of birds from sitting to flying.
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Figure 15: Example of inferred style controlling the pose of birds from facing towards right to facing towards left and the emergence of
tree branches in the background.

6.9.2 More style transfer results

Here, we provide more style transfer results in Figure 16 (Oxford-102) and Figure 17 (CUB). Each column uses the same
style inferred from a style source, and each row uses the same text description as the content source. The style sources that
are shown in the top row, and the corresponding real images for the content sources are shown in the leftmost column.



Figure 16: Disentangling content (in rows) and style (in columns) on Oxford-102 dataset by using content sources from text descriptions.
The style sources are shown in the top row, and the corresponding real images for the content sources are shown in the leftmost column.



Figure 17: Disentangling content (in rows) and style (in columns) on CUB dataset by using content sources from text descriptions. The
style sources are shown in the top row, and the corresponding real images for the content sources are shown in the leftmost column.



6.9.3 Style interpolations with synthetic style sources

To further validate the disentanglement of content and style, we artificially synthesize images that have certain desired known
styles, e.g., a flower or multiple flowers located in different locations (top left, top right, bottom left or bottom right), and
perform linear interpolation of ẑ from two different style sources. As shown in Figure 18, the flower can move smoothly from
one location to another, and the number of flowers can grow smoothly from one to two, suggesting that a good representation
of style information has been captured by our inference mechanism.

This flower is white and yellow in color, with only one large petal.

Flower is big and round petals are orange and the pistil is orange.

This flower has light, purple petals and a bee on it's stigma.

This flower has a light purple bottom petal with three other petals that are dark purple with green streaks.

This flower has petals that are white and are bunched together.

The petals on this flower are orange with a purple pistil.

Figure 18: Style interpolations with synthetic style sources: the moving flowers and the growing quantities of flowers.


