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1. Deriving the optimal µ
We start by defining the optimization objective as per (7,

main manuscript) as

F(V,m,µ) =

h∑
k=1

∑
x∈Lk

‖P>mV>x−P>mV>µk‖22

+
∑
i

‖P̃>mV>xi − P̃>mV>µ0‖22,

s.t. V>V = I
(1)

where µ = {µk}hk=1 are the cluster centroids with h be-
ing the number of classes, V ∈ O(d) is the learned data
transformation before applying the low-dimensional projec-
tion, where O(d) refers to the orthogonal group of dimen-
sion d, m ≤ d refers to the dimensionality of the projection
Pm ∈ Rd×m defined in (8, main manuscript).

The end goal of the optimization is to find V,m,µ that
minimizes F , formally

min
V,m,µ

F(V,m,µ). (2)

We first start by finding the optimal µ component-wise by
taking the gradient of F w.r.t. µk and setting this to the
zero vector for each k, specifically

∇µk
F(V,m,µ) = 0. (3)

Using the fact that ‖x‖22 = x>x and noticing that only the
terms containing µk remain, (3) becomes

∇µk
F(V,m,µ) = ∇µk

∑
x∈Lk

(L>m(x− µk))
>(L>m(x− µk))

= ∇µk

∑
x∈Lk

(x− µk)
>LmL>m(x− µk)

= −2
∑
x∈Lk

LmL>m(x− µk) = 0,

where Lm = VPm is the data transformation which con-
sists of the first m columns of V. From this, we can easily

see that an optimal solution is given by

µk =
1

|Lk|
∑
x∈Lk

x, (4)

consistent with (9, main manuscript). This is the global
minimizer of F since the F is quadratic in µk for all k
and the hessian of F w.r.t. µk is given by LmL>m which is
positive semidefinite. Again, note that the solution is inde-
pendent of V and m.

2. Rewriting the optimization objective

To derive the optimal values for V and m, we need to
rewrite (1), as

F(V,m,µ) =

h∑
k=1

∑
x∈Lk

‖P>mV>x−P>mV>µk‖22

+
∑
i

‖P̃>mV>xi − P̃>mV>µ0‖22,

=

h∑
k=1

∑
x∈Lk

(P>mV>x−P>mV>µk)
T (P>mV>x−P>mV>µk)

+
∑
i

(P̃>mV>xi − P̃>mV>µ0)
T (P̃>mV>xi − P̃>mV>µ0)

=

h∑
k=1

∑
x∈Lk

(x− µi)
TVPmPT

mVT (x− µi)

+
∑
i

(xi − µ0)
TVP̃mP̃T

mVT (xi − µ0).

Since each term in F(V,m,µ) returns a scalar, one can
employ the trace trick to re-write F(V,m,µ) as
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F(V,m,µ) =

h∑
k=1

∑
x∈Lk

tr
(
(x− µi)

TVPmPT
mVT (x− µi)

)
+
∑
i

tr
(
(xi − µ0)

TVP̃mP̃T
mV(xi − µ0)

)
= tr

(
h∑

k=1

∑
x∈Lk

(x− µi)
TVPmPT

mVT (x− µi)

)

+ tr

(∑
i

(xi − µ0)
TVP̃mP̃T

mV(xi − µ0)

)

= tr

(
h∑

k=1

∑
x∈Lk

PmPT
mVT (x− µi)(x− µi)

TV

)

+ tr

(∑
i

P̃mP̃T
mVT (xi − µ0)(xi − µ0)

TV

)
.

Based on the construction of Pm and P̃ and using the
fact that the trace of a matrix is the sum of its diagonal
elements, for any matrix A

tr(P̃mP̃T
mA) = tr(A)− tr(PmPT

mA). (5)

Hence,

F(V,m,µ) = tr

(
h∑

k=1

∑
x∈Lk

PmPT
mVT (x− µi)(x− µi)

TV

)

+ tr

(∑
i

P̃mP̃T
mV(xi − µ0)(xi − µ0)

TV

)

= tr

(
h∑

k=1

∑
x∈Lk

PmPT
mVT (x− µi)(x− µi)

TV

)

+ tr

(∑
i

P̃mP̃T
mVT (xi − µ0)(xi − µ0)

TV

)

= tr

(
h∑

k=1

∑
x∈Lk

PmPT
mVT (x− µi)(x− µi)

TV

)

− tr

(∑
i

PmPT
mVT (xi − µ0)(xi − µ0)

TV

)
+ tr

(
VT (xi − µ0)(xi − µ0)

TV
)
.

Finally, F(V,m,µ) can be written as

G(V,m,µ) = trace(PmP>mV>ΣV) + trace(V>S0V),
(6)

where the S0 and Σ are given by

S0 =
∑
x∈D

(x− µ0)(x− µ0)
>, (7)

and

Σ =

h∑
k=1

∑
x∈Lk

(x− µk)(x− µk)
> − S0. (8)

3. Deriving the optimal V
We now wish to find V such that G(V,m,µ) is mini-

mized, recalling that the rightmost term in (6) is invariant

for all V shown in Section 3.2.2. of the main text. Hence,
we only need to minimize the first term.

Recall that PmP>m is a d × d matrix with 1 for the first
m diagonal elements (from the top left) and 0 elsewhere.
Given this, trace(PmP>mV>ΣV) is the sum of the first m
diagonal elements in V>ΣV. Each element in the sum can
therefore be expressed as v>i Σvi, where vi is column i in
V and since V is orthogonal, ‖vi‖2 = 1. We wish to find
vi such that

min
‖vi‖2=1

v>i Σvi, (9)

and {v1,v2, . . . ,vd} are pairwise orthogonal. Since by
construction, Σ is a square symmetric matrix, we ap-
ply the spectral theorem of Hermitian matrices and re-
place Σ with its eigendecomposition QΛQ>, where Λ =
diag(λ1, . . . , λd) are the eigenvalues of Σ (assumed to be
sorted from highest to lowest) and Q is an orthogonal
matrix whose columns are the corresponding normalized
eigenvectors. From this,

min
‖vi‖2=1

v>i Σvi = min
‖vi‖2=1

v>i QΛQ>vi (10)

= min
‖zi‖2=1

z>i Λzi (11)

= min
‖zi‖2=1

d∑
j=1

z2ijλj , (12)

where zi = Q>vi and zij is the j-th element of zi. Since
Q is invertible (from orthogonality), we can find the opti-
mal Z = {z1, z2, . . . , zd} ∈ Rd×d such that Z is also or-
thogonal. Working recursively and noting the orthogonality
constraint, it is clear that z1 = (0, 0, . . . , 0, 1)> and subse-
quently z2 = (0, 0, . . . , 0, 1, 0)> and so on. Consequently,
the columns of V = QZ are just the normalized eigenvec-
tors of Σ where the columns are ordered in increasing order
by the corresponding eigenvalues. Note that this construc-
tion yields a valid solution for all m ≤ d.

4. Deriving the optimal m
We can now use the results from the previous sections to

select m. Given that the columns of the optimal V are the
normalized eigenvectors of Σ, it follows that

trace(PmP>mV>ΣV) =

m∑
i=1

viΣvi =

m∑
i=1

λi. (13)

Clearly, if Σ has no negative eigenvalues, then m = 0, oth-
erwise m = k, where k denotes the number of negative
eigenvalues of Σ. Note that Σ as defined in (8) is not nec-
essarily positive semidefinite since S0 is subtracted from
the sum. We find that in practice, it is always the case that
m = h.
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