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1. Deriving the optimal p

We start by defining the optimization objective as per (7,
main manuscript) as
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where g = {p}1_, are the cluster centroids with h be-
ing the number of classes, V € O(d) is the learned data
transformation before applying the low-dimensional projec-
tion, where O(d) refers to the orthogonal group of dimen-
sion d, m < d refers to the dimensionality of the projection
P,, € R™ defined in (8, main manuscript).

The end goal of the optimization is to find V, m, p that
minimizes F, formally

anlzr,lu F(V,m, ).
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We first start by finding the optimal g component-wise by
taking the gradient of F w.r.t. p; and setting this to the
zero vector for each k, specifically

vuk"F(va7 N) =0. 3)

Using the fact that ||x||3 = x " x and noticing that only the
terms containing . remain, (3) becomes

vl—"kj:(v7m’,‘l’) = vuk (Lr—lr—z(x_uk))T(L;r@(X_ uk))
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xXELY
where L,, = VP, is the data transformation which con-

sists of the first m columns of V. From this, we can easily
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see that an optimal solution is given by
“)

consistent with (9, main manuscript). This is the global
minimizer of F since the F is quadratic in py for all k
and the hessian of F w.r.t. uy, is given by L,, L, which is
positive semidefinite. Again, note that the solution is inde-
pendent of V and m.

2. Rewriting the optimization objective

To derive the optimal values for V and m, we need to
rewrite (I, as

F(V,m, p) —P, Vi3
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Since each term in F(V,m, u) returns a scalar, one can
employ the trace trick to re-write F(V,m, ) as
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Based on the construction of P,, and P and using the
fact that the trace of a matrix is the sum of its diagonal
elements, for any matrix A

(P, PT A) = tr(A) — tr(P,,PL A). %)
Hence,
h
F(V,m,p) =tr (Z Z P, PTVT(x — pu)(x — ui)TV>
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Finally, F(V,m, ) can be written as

G(V,m, p) = trace(P,, P} VI IV) + trace(V 'Sy V),
(6)

where the Sy and 3 are given by
So =) (x—po)(x—ho)", @)
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and

h
D= ) x-pm)x—m) —So.  (®)
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3. Deriving the optimal V

We now wish to find V such that G(V,m, p) is mini-
mized, recalling that the rightmost term in (6) is invariant
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for all V shown in Section 3.2.2. of the main text. Hence,
we only need to minimize the first term.

Recall that P,,P, is a d x d matrix with 1 for the first
m diagonal elements (from the top left) and O elsewhere.
Given this, trace(P,,P,) VT XV) is the sum of the first m
diagonal elements in V' £V Each element in the sum can
therefore be expressed as v;r Yv;, where v; is column 7 in
V and since V is orthogonal, ||v;|]2 = 1. We wish to find
v; such that

min v, Tyv Vi, ©))
lvilla=1

and {vi,va,..., vy} are pairwise orthogonal. Since by
construction, 3 is a square symmetric matrix, we ap-
ply the spectral theorem of Hermitian matrices and re-
place 3 with its eigendecomposition QAQT, where A =
diag(Aq, ..., \q) are the eigenvalues of X (assumed to be
sorted from highest to lowest) and Q is an orthogonal
matrix whose columns are the corresponding normalized
eigenvectors. From this,
min VTQAQTvl (10)

min VZTEVZ» =

lvill2=1 lvill2=1
= min ZTAZZ (11)
llz:ll2=1
d
= min z IE (12)
lzallz=1 —
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where z; = QTvi and z;; is the j-th element of z;. Since
Q is invertible (from orthogonality), we can find the opti-
mal Z = {z1,2s,...,24} € R¥? such that Z is also or-
thogonal. Working recursively and noting the orthogonality
constraint, it is clear that z; = (0,0,...,0,1)" and subse-
quently zo = (0,0,...,0,1,0)" and so on. Consequently,
the columns of V = QZ are just the normalized eigenvec-
tors of 3 where the columns are ordered in increasing order
by the corresponding eigenvalues. Note that this construc-
tion yields a valid solution for all m < d.

4. Deriving the optimal m

We can now use the results from the previous sections to
select m. Given that the columns of the optimal V are the
normalized eigenvectors of X, it follows that

= zmj i (13)
i=1

Clearly, if 32 has no negative eigenvalues, then m = 0, oth-
erwise m = k, where k denotes the number of negative
eigenvalues of 3. Note that X as defined in (8) is not nec-
essarily positive semidefinite since Sy is subtracted from
the sum. We find that in practice, it is always the case that
m = h.

trace(P,,P] V'2V) = ZviEvi



