
Supplementary Material for
Drop to Adapt:

Learning Discriminative Features for Unsupervised Domain Adaptation

Seungmin Lee∗

Seoul National Univ.
Dongwan Kim∗

Seoul National Univ.
Namil Kim

NAVER LABS
Seong-Gyun Jeong

CODE42.ai

In this supplementary material, we derive an approximation of the channel-wise adversarial dropout (§ Appendix A) and
provide implementation details of the experiments (§ Appendix B). Lastly, we provide additional GradCAM visualizations
(§ Appendix C).

Appendix A. Approximation of Channel-wise Adversarial Dropout
Without loss of generality, the dropout mask m is vectorized to v = vec(m) ∈ RCHW . Similarly, v0 and vs represent

vectorized forms of m0 and ms, respectively. After vectorization of m, we refer to the elements of m(i) with a set of indices
πi, and impose the channel-wise dropout constraints as follows:

v[πi] = vec(m(i)) = 0 or 1 ∈ RHW . (a-1)

Let denote d(x,v;vs) = D [h(x;vs), h(x;v)] as the divergence between two outputs using different dropout masks for
convenience sake. Assuming d is a differentiable function with respect to v, it can be approximated by a first-order Taylor
expansion:

d(x,v;vs) ≈ d(x,v0;vs) + (v − v0)TJ where J = ∇vd(x,v;vs)
∣∣∣
v=v0

.

This equation shows that the Jacobian is proportional to the divergence. In other words,

d(x,v;vs) ∝ vTJ. (a-2)

We now see that the elements of J correspond to the impact values, which indicate the contribution of each activation over the
divergence metric. Thus, for the given Jacobian, we can systematically modify the elements of v to maximize the divergence.
However, due to the channel-wise dropout constraint from Eq. (a-1), we cannot modify each element individually. Instead,
we reformulate the above relationship as:

d(x,v;vs) ∝
C∑
i

v[πi]
TJ[πi]. (a-3)

The impact value s of the i-th activation map in hl(x) can be defined as:

si = 1TJ[πi], (a-4)

Consequently, after computing the impact values s, we solve 0/1 Knapsack problem as proposed in [3] while holding the
constraints (a-1).
∗ denotes equal contribution.

This work was done while the authors were at NAVER LABS.

A-1



Table A-1. Hyperparameters

Experiment Backbone λ1 λ2 λ3 δ̄e δ̄c Tr ε

Small dataset
SVHN→MNIST 9 Conv+1 FC 2 0.01 0.1 0.1 0.05 80 3.5
MNIST→ USPS 3 Conv+2 FC 2 0.01 0 0.1 0.05 80 0
USPS→MNIST 3 Conv+2 FC 2 0.01 0.1 0.1 0.05 80 3.5
STL→ CIFAR 9 Conv+1 FC 2 0.01 0.1 0 0.05 60 3.5
CIFAR→ STL 9 Conv+1 FC 2 0.01 0 0 0.05 80 0

Large dataset
VisDA-2017 Classification ResNet-50 2 0.02 0.2 0.1 0.01 20 15
VisDA-2017 Classification ResNet-101 2 0.02 0.2 0.1 0.01 30 15

Semantic segmentation
GTA5→ Cityscapes ResNet-50 FCN 2 0.01 0 0 0.02 1 0

Appendix B. Implementation Details
Training with DTA Loss

We apply a ramp-up factor on DTA loss function LDTA to stabilize the training process. Instead of directly modulating
the weight term λ1, we gradually increase the perturbation magnitudes δe and δc which decide the number of hidden units
to be eliminated. It allows us to regulate the consistency term, and to train the network being robust to various levels of
perturbation generated by the adversarial dropout. We update the ramp-up factors with the following schedule:

β(t) = min(1, t
Tr

), (a-5)

where Tr represents the ramp-up period, and β(t) denotes the ramp up factor at the current epoch t. Finally, the perturbation
magnitude is defined as:

δ(t) = β(t)δ̄, (a-6)

where δ̄ denotes the maximum level of perturbation. In practice, the same ramp-up period Tr is applied for both δe and δc.

Hyperparameters

Table A-1 presents the hyperparameters used in our experiments. We followed a similar hyperparameter search protocol as
Shu et al. [5], where we sample a very small subset of labels from the target domain training set. For each objective function,
we limit the hyperparameter search to a predefined set of values: λ1 = {2}, λ2 = {0, 0.01, 0.02}, λ3 = {0, 0.1, 0.2},
δe = {0, 0.1}, δc = {0, 0.01, 0.02, 0.05}, and ε = {0, 3.5, 15}. Furthermore, we provide the rest of parameters related to
network training for each experimental set up.

Small dataset. All small dataset experiments were trained for 90 epochs, using Adam optimizer [1] with an initial learning
rate of 0.001, decaying by a factor of 0.1 every 30 epochs.

Large dataset. We conducted the VisDA-2017 classification experiments on ResNet-50 and ResNet-101. We trained the
networks for 20 epochs using Stochastic Gradient Descent (SGD) with a momentum value of 0.9 and an initial learning rate
of 0.001, which decays by a factor of 0.1 after 10th epoch.

Semantic segmentation. The semantic segmentation task for domain adaptation from GTA5 to Cityscapes was trained for
5 epochs using SGD with a momentum of 0.9. Since FCN [2] has no fully-connected layers, δ̄e was automatically set to 0. In
addition, we used the maximum δ̄c value from the beginning because the task-specific objective were dominant in the early
stages of training. In this experiment, we turned off VAT objective which hinders from learning the segmentation task.



Appendix C. Additional GradCAM visualizations
In Figure A-1, we provide additional GradCAM visualizations to highlight the effects of adversarial dropout.

(a) Input (b) SO (c) SO+AdD (d) DTA (e) DTA+AdD

Figure A-1. Effect of adversarial dropout, visualized by GradCAM [4].

References
[1] Diedrik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
[2] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
[3] Sungrae Park, JunKeon Park, Su-Jin Shin, and Il-Chul Moon. Adversarial dropout for supervised and semi-supervised learning. In

AAAI, 2018.
[4] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam:

Visual explanations from deep networks via gradient-based localization. In IEEE ICCV, 2017.
[5] Rui Shu, Hung Bui, Hirokazu Narui, and Stefano Ermon. A DIRT-T approach to unsupervised domain adaptation. In ICLR, 2018.


