
Supplementary Material:
Overcoming Catastrophic Forgetting with Unlabeled Data in the Wild

A. Illustration of Global Distillation
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Figure A.1. An illustration of how a model M learns with global distillation (GD). For GD, three reference models are used: P is the
previous model, C is the teacher for the current task, and Q is an ensemble of them.

B. Details on Experimental Setup

Hyperparameters. We use mini-batch training with a batch size of 128 over 200 epochs for each training to ensure con-
vergence. The initial learning rate is 0.1 and decays by 0.1 after 120, 160, 180 epochs when there is no fine-tuning. When
fine-tuning is applied, the model is first trained over 180 epochs where the learning rate decays after 120, 160, 170 epochs,
and then fine-tuned over 20 epochs, where the learning rate starts at 0.01 and decays by 0.1 after 10, 15 epochs. We note that
20 epochs are enough for convergence even when fine-tuning the whole networks for some methods. We update the model
parameters by stochastic gradient decent with a momentum 0.9 and an L2 weight decay of 0.0005. The size of the coreset
is set to 2000. Due to the scalability issue, the size of the sampled external dataset is set to the size of the labeled dataset.
The ratio of OOD data in sampling is determined by validation on a split of ImageNet, which is 0.7. For all experiments, the
temperature for smoothing softmax probabilities is set to 2 for distillation from P and C, and 1 for distillation from Q. To be
more specific about the way to scale probabilities, let z = {zy|y ∈ T } = M(x; θ, φ) be the set of outputs (or logits). Then,
with a temperature γ, the probabilities are computed as follows:

p(y = k|x, θ, φ) = exp(zk/γ)∑
y′∈T exp(zy′/γ)

.

Scalability of methods. We note that all compared methods are scalable and they are compared in a fair condition. We
do not compare generative replay methods with ours, because the coreset approach is known to outperform them in class-
incremental learning in a scalable setting: in particular, it has been reported that continual learning for a generative model is
a challenging problem on datasets of natural images like CIFAR-100 [3, 5].



C. More Experimental Results
C.1. More Ablation Studies
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(a) CIFAR-100 ACC
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(b) CIFAR-100 FGT
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(c) ImageNet ACC
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(d) ImageNet FGT
Figure C.1. Experimental results on CIFAR-100 and ImageNet when the task size is 10. We report ACC and FGT with respect to the OOD
ratio averaged over ten trials for CIFAR-100 and nine trials for ImageNet.

Effect of the OOD ratio. We investigate the effect of the ratio between the sampled data likely to be in the previous tasks
and OOD data. As shown in Figure C.1, the optimal OOD ratio varies over datasets, but it is higher than 0.5: specifically,
the best ACC is achieved when the OOD ratio is 0.8 on CIFAR-100, and 0.7 on ImageNet. On the other hand, the optimal
OOD ratio for FGT is different: specifically, the best FGT is achieved when the OOD ratio is 0.2 on CIFAR-100, and 0.5 on
ImageNet.
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(b) ImageNet FGT
Figure C.2. Experimental results on ImageNet when the task size is 10. We report ACC and FGT with respect to the hierarchical distance
between the training dataset and unlabeled data stream averaged over nine trials.

Effect of the correlation between the training data and unlabeled external data. So far, we do not assume any correlation
between training data and external data. However, in this experiment, we control the correlation between them based on the
hypernym-hyponym relationship between ImageNet class labels. Specifically, we first compute the hierarchical distance (the
length of the shortest path between classes in hierarchy) between 1k classes in ImageNet ILSVRC 2012 training dataset and
the other 21k classes in the entire ImageNet 2011 dataset. Note that the hierarchical distance can be thought as the semantic
difference between classes. Then, we divide the 21k classes based on the hierarchical distance, such that each split has at
least 1M images for simulating an unlabeled data stream. As shown in Figure C.2, the performance is proportional to the
semantic similarity, which is inversely proportional the hierarchical distance. However, even in the worst case, unlabeled data
are beneficial.



C.2. More Results

Table C.1. Comparison of methods on CIFAR-100 and ImageNet. We report the mean and standard deviation of ten trials for CIFAR-100
and nine trials for ImageNet with different random seeds in %. ↑ (↓) indicates that the higher (lower) number is the better.

Dataset CIFAR-100 ImageNet
Task size 5 10 20 5 10 20

Metric ACC (↑) FGT (↓) ACC (↑) FGT (↓) ACC (↑) FGT (↓) ACC (↑) FGT (↓) ACC (↑) FGT (↓) ACC (↑) FGT (↓)
Oracle 78.6 ± 0.9 3.3 ± 0.2 77.6 ± 0.8 3.1 ± 0.2 75.7 ± 0.7 2.8 ± 0.2 68.0 ± 1.7 3.3 ± 0.2 66.9 ± 1.6 3.1 ± 0.3 65.1 ± 1.2 2.7 ± 0.2

Without an external dataset
Baseline 57.4 ± 1.2 21.0 ± 0.5 56.8 ± 1.1 19.7 ± 0.4 56.0 ± 1.0 18.0 ± 0.3 44.2 ± 1.7 23.6 ± 0.4 44.1 ± 1.6 21.5 ± 0.5 44.7 ± 1.2 18.4 ± 0.5
LwF [4] 58.4 ± 1.3 19.3 ± 0.5 59.5 ± 1.2 16.9 ± 0.4 60.0 ± 1.0 14.5 ± 0.4 45.6 ± 1.9 21.5 ± 0.4 47.3 ± 1.5 18.5 ± 0.5 48.6 ± 1.2 15.3 ± 0.6
DR [2] 59.1 ± 1.4 19.6 ± 0.5 60.8 ± 1.2 17.1 ± 0.4 61.8 ± 0.9 14.3 ± 0.4 46.5 ± 1.6 22.0 ± 0.5 48.7 ± 1.6 18.8 ± 0.5 50.7 ± 1.2 15.1 ± 0.5
E2E [1] 60.2 ± 1.3 16.5 ± 0.5 62.6 ± 1.1 12.8 ± 0.4 65.1 ± 0.8 8.9 ± 0.2 47.7 ± 1.9 17.9 ± 0.4 50.8 ± 1.5 13.4 ± 0.4 53.9 ± 1.2 8.8 ± 0.3

GD (Ours) 62.1 ± 1.2 15.4 ± 0.4 65.0 ± 1.1 12.1 ± 0.3 67.1 ± 0.9 8.5 ± 0.3 50.0 ± 1.7 16.8 ± 0.4 53.7 ± 1.5 12.8 ± 0.5 56.5 ± 1.2 8.4 ± 0.4
With an external dataset

LwF [4] 59.7 ± 1.2 19.4 ± 0.5 61.2 ± 1.1 17.0 ± 0.4 60.8 ± 0.9 14.8 ± 0.4 47.2 ± 1.7 21.7 ± 0.5 49.2 ± 1.3 18.6 ± 0.4 49.4 ± 0.8 15.8 ± 0.4
DR [2] 59.8 ± 1.0 19.5 ± 0.5 62.0 ± 0.9 16.8 ± 0.4 63.0 ± 1.0 13.9 ± 0.4 47.3 ± 1.7 21.8 ± 0.6 50.2 ± 1.5 18.5 ± 0.5 51.8 ± 0.9 14.9 ± 0.5
E2E [1] 61.5 ± 1.2 16.4 ± 0.5 64.3 ± 1.0 12.7 ± 0.4 66.1 ± 0.9 9.2 ± 0.4 49.2 ± 1.7 17.7 ± 0.6 52.8 ± 1.4 13.2 ± 0.2 55.2 ± 0.9 9.0 ± 0.4

GD (Ours) 66.3 ± 1.2 9.8 ± 0.3 68.1 ± 1.1 7.7 ± 0.3 68.9 ± 1.0 5.5 ± 0.4 55.2 ± 1.8 9.6 ± 0.4 57.7 ± 1.6 7.4 ± 0.3 58.7 ± 1.2 5.4 ± 0.3
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(a) ACC improvement by learning with external data
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(b) FGT improvement by learning with external data
Figure C.3. Experimental results on ImageNet. Arrows show the performance gain in ACC and FGT by learning with unlabeled data,
respectively. We report the average performance of nine trials.

5 101520253035404550556065707580859095100
Number of classes

35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
cu

ra
cy

 (%
)

(a) ACC with respect to the number of trained classes
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(b) FGT with respect to the number of trained classes
Figure C.4. Experimental results on CIFAR-100 when the task size is 5. We report ACC and FGT with respect to the number of trained
classes averaged over ten trials.
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(a) ACC with respect to the number of trained classes
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(b) FGT with respect to the number of trained classes
Figure C.5. Experimental results on CIFAR-100 when the task size is 20. We report ACC and FGT with respect to the number of trained
classes averaged over ten trials.
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(a) ACC with respect to the number of trained classes
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(b) FGT with respect to the number of trained classes
Figure C.6. Experimental results on ImageNet when the task size is 5. We report ACC and FGT with respect to the number of trained
classes averaged over nine trials.
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(a) ACC with respect to the number of trained classes
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(b) FGT with respect to the number of trained classes
Figure C.7. Experimental results on ImageNet when the task size is 10. We report ACC and FGT with respect to the number of trained
classes averaged over nine trials.
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(a) ACC with respect to the number of trained classes
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(b) FGT with respect to the number of trained classes
Figure C.8. Experimental results on ImageNet when the task size is 20. We report ACC and FGT with respect to the number of trained
classes averaged over nine trials.
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