
Supplementary Material of
CDPN: Coordinates-Based Disentangled Pose Network for Real-Time

RGB-Based 6-DoF Object Pose Estimation

Zhigang Li Gu Wang Xiangyang Ji
Tsinghua University

Beijing, China
{lzg15, wangg16}@mails.tsinghua.edu.cn xyji@tsinghua.edu.cn

In this supplementary document, we first provide the de-
tailed analysis on why the translation performance varies
dramatically among objects when the pose is solved from
coordinates. It impels us to develop a novel disentangled
network to solve translation and rotation independently in
the main paper. Then, we present the implementation de-
tails. Finally, we evaluate the influence of RANSAC itera-
tions and provide more detailed results on the LINEMOD
dataset.

A. Detailed Analysis on Translation Solved
from Coordinates

As mentioned in the main paper, the pose solved from
coordinates shows diverse performance on ADD metric
across different object catergories, which is mainly caused
by the unbalanced translation performance (Fig. 3(a) in
main paper). It shows that the method lacks robustness and
fails in some cases.

Here we analyze the main cause of the unbalanced per-
formance regarding translation estimation. The camera
imaging process can be described as a full perspective cam-
era model in Eq. 1.

w[u v 1]T = K[R T][x y z 1]T , s.t.,RT R = I (1)

where K, R and T are the camera intrinsic parameters, ro-
tation matrix, translation vector. w is a scale factor.

After building the 2D-3D correspondences from the pre-
dicted coordinates-confidence map, the pose can be solved
by minimizing the 2D projection error via PnP (and maxi-
mizing the inliers via RANSAC). The coordinates [x, y, z],
pixels [u, v] and the PnP+RANSAC algorithm can affect the
translation T. For PnP+RANSAC, evidently, the influence
should be consistent and the same for all objects. In terms
of the influence from 2D pixels, we erode the confidence
map to maintain high-confidence object pixels and ensure

(a) f = 1 (b) f = 1.03

Figure 1: (a) Translation solved from coordinates without
scaling. (b) Translation solved from f · coordinates, where
f is a coefficient to compensate the scale error. The re-
sults indicate that the unbalanced translation performance
is caused by the scale error of coordinates.

no background pixels are selected. However, the problem
still exists. So, the crux lies in the coordinates [x, y, z]. We
analyze each translation component Tx, Ty and Tz . See
the Fig. 3(b) in main paper, the inaccuracy mainly comes
from Tz , i.e. the depth between object and camera. Since
the depth is affected by the size ratio of the object in image
to the 3D object, the main cause of the problem probably
lies in the ‘scale’ error of the predicted object coordinates.
To verify it, we multiply the predicted coordinates with a
scalar coefficient f and solve the pose. See the results in
Fig. 1, the translation accuracy of ‘ape’ amazingly increases
from 45.9% to 90.76% on threshold 2cm when f = 1.03.
However, the accuracy of ‘benchvise’ drops from 92.05%
to 48.01%. So, the real cause is the inaccurate coordinates
‘scale’. Different objects own different scale errors δscale,
which results in the dramatical diverse translation perfor-



Maximum Iters 5 10 20 50 100 > 100

5cm 5◦ 93.68 94.12 94.30 94.31 94.31 ∼ 94.31

Table 1: Evaluation on RANSAC iterations.

mance across different object catergories.
To solve the problem caused by the scale errors δscale. A

direct way is to introduce a coefficient f for each object to
compensate δscale after training. However, the prerequisite
for this method is that training samples share the same δscale
with test samples. When the training data and test data come
from different sources (e.g. synthetic training data vs. real
test data), the δscale can be different. Moreover, finding a
proper f for each object is quite time-consuming and te-
dious. Since the scale error δscale only affects translation,
we propose to disentangle the pose estimation to solve this
problem by indirectly solving rotation from coordinates via
PnP while directly regressing translation from image (see
the main paper).

B. Implementation Details

Network Architecture. In CDPN, we use
ResNet34 as our backbone net. Then, we define
deconv1/conv2/conv3 as a up-scaling block, includ-
ing a deconvolutional layer (kernel 3×3, stride 2, channel
256, relu, bn) and two convolutional layers (kernel 3×3,
stride 1, channel 256, relu, bn). The rotation head is built
by stacking three up-scaling blocks with an additional
output convolutional layer (kernel 1×1, stride 1, channel
4). For the translation head, it includes six conv (kernel
3×3, stride 1, channel 256, relu, bn) layers and subsequent
three fully-connected layers (4096-4096-3).

Training. Our approach was implemented in the Py-
torch framework [4]. We trained all categories using one
network. The parameters in Dynamic Zoom In were set as
follows: α = β = γ = 0.25, ρ = 1.5 and σ1 = σ2 =
σ3 = 1. For Masked Coordinates-Confidence Loss, we set
α = β = 1. When building 2D-3D correspondences, we
used 0.5 as the threshold of the confidence map to extract
the 2D pixels. For Scale-invariant Translation Estimation,
we first converted the unit of 3D coordinates to meter and
then set γ1 = γ2 = γ3 = 1. During training, the initial
learning rate was 1 × 10−4 and the batch size was 6. We
used RMSProp with alpha 0.99 and epsilon 1× 10−8 to op-
timize the network. The model was trained for 160 epochs
in total and the learning rate was divided by 10 every 50
epochs.

C. RANSAC Iterations

Here, we evaluate the influence of the number of
RANSAC iterations (Table 1). The results show that a

few iterations (e.g. 20) are enough for our approach to
achieve highly accurate pose estimation, which is crucial for
building a fast real-time system considering that RANSAC
is quite time-consuming when the number of iterations is
large.

D. Detailed Results on the LINEMOD Dataset
Table 2, 3, 4 show the detailed results of the comparison

to the state-of-the-art RGB-only methods on LINEMOD
dataset. It is worth noting that even without refinement, our
approach still outperforms those methods refined with depth
and ICP.

E. More Qualitative Results
See more qualitative 6-DoF pose estimation results in

Fig. 2 3 4.

References
[1] Eric Brachmann, Frank Michel, Alexander Krull, Michael

Ying Yang, Stefan Gumhold, et al. Uncertainty-driven 6d pose
estimation of objects and scenes from a single rgb image. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[2] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan
Ilic, and Nassir Navab. SSD-6D: Making rgb-based 3D de-
tection and 6D pose estimation great again. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2017.

[3] Apurv Nigam, Adrian Penate-Sanchez, and Lourdes Agapito.
Detect globally, label locally: Learning accurate 6-dof object
pose estimation by joint segmentation and coordinate regres-
sion. IEEE Robotics and Automation Letters (RAL), 2018.

[4] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-
entiation in pytorch. 2017.

[5] Mahdi Rad and Vincent Lepetit. BB8: A scalable, accurate,
robust to partial occlusion method for predicting the 3D poses
of challenging objects without using depth. In Proceedings
of the IEEE International Conference on Computer Vision
(ICCV), 2017.

[6] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian
Durner, Manuel Brucker, and Rudolph Triebel. Implicit 3d
orientation learning for 6d object detection from rgb images.
In Proceedings of The European Conference on Computer Vi-
sion (ECCV), 2018.

[7] Bugra Tekin, Sudipta N. Sinha, and Pascal Fua. Real-Time
Seamless Single Shot 6D Object Pose Prediction. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[8] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Di-
eter Fox. Posecnn: A convolutional neural network for 6d ob-
ject pose estimation in cluttered scenes. In Robotics: Science
and Systems (RSS), 2018.



w/o Refinement w/ Refinement

Method
BB8 YOLO6D PoseCNN SSD6D AAE Brachmann Nigam Ours BB8 SSD6D Brachmann AAE
[5] [7] [8] [2] [6] [1] [3] [5] [2] [1] [6]

ape - - 7.0 - - - 47.7 81.62 80.2 - 34.4 -
benchvise - - 13.6 - - - 37.9 97.87 81.5 - 40.6 -
camera - - 20.4 - - - 31.5 98.43 60.0 - 30.5 -
can - - 24.9 - - - 48.5 99.11 76.8 - 48.4 -
cat - - 25.1 - - - 37.4 96.01 79.9 - 34.6 -
driller - - 18.2 - - - - 96.63 69.6 - 54.5 -
duck - - 18.2 - - - 52.8 90.14 53.2 - 22.0 -
eggbox - - 33.3 - - - - 98.78 81.3 - 57.1 -
glue - - 19.5 - - - - 82.82 54.0 - 23.6 -
holepuncher - - 15.9 - - - - 98.38 73.1 - 47.3 -
iron - - 13.1 - - - 41.6 93.56 61.1 - 58.7 -
lamp - - 24.4 - - - 51.9 98.85 67.5 - 49.3 -
phone - - 19.3 - - - - 93.77 58.6 - 26.8 -
Average - - 19.4 - - - 43.7 94.31 69.0 - 40.6 -

Table 2: Comparison with state-of-the-art RGB-only methods on 5cm 5◦.

w/o Refinement w/ Refinement

Method
BB8 YOLO6D PoseCNN SSD6D AAE Brachmann Nigam Ours BB8 SSD6D Brachmann AAE
[5] [7] [8] [2] [6] [1] [3] [5] [2] [1] [6]

ape 27.9 21.62 27.8 0.00 3.96 - - 64.38 40.4 65 33.2 20.55
benchvise 62.0 81.80 68.9 0.18 20.92 - - 97.77 91.8 80 64.8 64.25
camera 42.1 36.57 47.5 0.41 30.47 - - 91.67 55.7 78 38.4 63.20
can 48.1 68.80 71.4 1.35 35.87 - - 95.87 64.1 86 62.9 76.09
cat 45.2 41.82 56.7 0.51 17.90 - - 83.83 62.6 70 42.7 72.01
driller 58.6 63.51 65.4 2.58 23.99 - - 96.23 74.4 73 61.9 41.58
duck 32.8 27.23 42.8 0.00 4.86 - - 66.76 44.3 66 30.2 32.38
eggbox 40.0 69.58 98.3 8.90 81.01 - - 99.72 57.8 100 49.9 98.64
glue 27.0 80.02 95.6 0.00 45.49 - - 99.61 41.2 100 31.2 96.39
holepuncher 42.4 42.63 50.9 0.30 17.60 - - 85.82 67.2 49 52.8 49.88
iron 67.0 74.97 65.6 8.86 32.03 - - 97.85 84.7 78 80.0 63.11
lamp 39.9 71.11 70.3 8.20 60.47 - - 97.89 74.5 73 67.0 91.69
phone 35.2 47.74 54.6 0.18 33.79 - - 90.75 54.0 79 38.1 70.96
Average 43.6 55.95 62.7 2.42 31.41 32.3 - 89.86 62.7 79 50.2 64.67

Table 3: Comparison with state-of-the-art RGB-only methods on ADD.

w/o Refinement w/ Refinement

Method
BB8 YOLO6D PoseCNN SSD6D AAE Brachmann Nigam Ours BB8 SSD6D Brachmann AAE
[5] [7] [8] [2] [6] [1] [3] [5] [2] [1] [6]

ape 95.3 92.10 83.0 - - - - 96.86 96.6 - 85.2 -
benchvise 80.0 95.06 50.0 - - - - 98.35 90.1 - 67.9 -
camera 80.9 93.24 71.9 - - - - 98.73 86.0 - 58.7 -
can 84.1 97.44 69.8 - - - - 99.41 91.2 - 70.8 -
cat 97.0 97.41 92.0 - - - - 99.80 98.8 - 84.2 -
driller 74.1 79.41 43.6 - - - - 95.34 80.9 - 73.9 -
duck 81.2 94.65 91.8 - - - - 98.59 92.2 - 73.1 -
eggbox 87.9 90.33 91.1 - - - - 98.97 91.0 - 83.1 -
glue 89.0 96.53 88.0 - - - - 99.23 92.3 - 74.2 -
holepuncher 90.5 92.86 82.1 - - - - 99.71 95.3 - 78.9 -
iron 78.9 82.94 41.8 - - - - 97.24 84.8 - 83.6 -
lamp 74.4 76.87 48.4 - - - - 95.49 75.8 - 64.0 -
phone 77.6 86.07 58.8 - - - - 97.64 85.3 - 60.6 -
Average 83.9 90.37 70.2 - - 69.5 - 98.10 89.3 - 73.7 -

Table 4: Comparison with state-of-the-art RGB-only methods on Proj. 2D.



Figure 2: Qualitative results on the LINEMOD dataset. The green 3D bounding boxes represent the ground truth while the
blue ones represent our predictions.



Figure 3: Qualitative results on the LINEMOD dataset. The green 3D bounding boxes represent the ground truth while the
blue ones represent our predictions.



Figure 4: Qualitative results on the LINEMOD dataset. The green 3D bounding boxes represent the ground truth while the
blue ones represent our predictions.


