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Number of basis m Channel c Transition Layer Split

24 444 1
26 444 1
32 444 1
36 444 6
38 444 12

Table 1. DenseNet-12-40 compression configuration for Table 4 in
the main paper. The basis set is shared by all of the DenseBlocks.
For lower layer DenseBlocks, a slice of the shared basis is used as
the basis of that layer. For the former three configurations, we do
not compress the transition layers in DenseNet. But for the latter
two, the transition layers are also compressed with the specified
number of splits.

1. Compressed Network Configuration

The basis configurations of our filter basis learning
method for different networks including DenseNet [2],
ResNet [1], VGG [6], EDSR [4], EDSR-8-128, SRRes-
Net [3] are shown in Table 1, Table 2, and Table 3. For
DenseNet, we used the network-wise basis sharing. For
ResNet, we used group-wise basis sharing. We also tried
basis sharing within the residual block for EDSR.

We reimplemented the network compression method
Factor [7] and Group [5]. For the Factor method, to com-
pare the methods fairly, we use two and three single intra-
channel convolutional layers (SIC layer) [7] in Table 2, two
SIC layers in Table 5 and Table 6, and one SIC layer in Table
3 to substitute one standard convolutional layer. To keep the
number of parameter of the Group method [5] at the same
level with other methods, the group size is set to 8, and 64 to
approximate ResNet, and VGG respectively. To compress
DenseNet, 3 groups are used for the first 20 DenseBlocks
while 6 groups are used for the rest DenseBlocks.

∗Equal contribution

Residual Block Group Number of basis m Channel c

Group One 24 16
Group Two 48 32

Group Three 84 64

Table 2. ResNet-56 compression configuration. There are 27 resid-
ual blocks in ResNet-56, distributed into three groups with in-
creasing number of channels but reducing resolution. The basis
is shared by the convolutions within the same group. This config-
uration corresponds to the ResNet-56 entry in Table 5 of the main
paper.

Network Number of basis m Channel c

SRResNet (Basis-64-14) 14 64
SRResNet (Basis-32-32) 32 32

EDSR-8-128 (Basis-128-27) 27 128
EDSR-8-128 (Basis-128-40) 40 128

EDSR (Basis) 32 256
EDSR (Basis-S) 32 256

VGG-16 128 128

Table 3. Compression configuration of SRResNet, EDSR-8-128,
EDSR, and VGG-16. ‘Basis’ means that there is a unique basis for
each convolutional layer. ‘Basis-S’ means that the basis is shared
by the two convolutional layers within the residual block. For
VGG-16, the first three convolutional layers are not compressed.

2. Training and Testing Error Curves for Im-
age Classification

The error curves during training and testing for
DenseNet-12-40, ResNet-56, and VGG-16 on CIFAR10 are
shown in Fig. 1, Fig 3, and Fig 2, respectively. Our method
shoots the lowest stable error rate for all the three networks
during training and testing.

3. More Visual Results for Super-Resolution
More visual results for image super-resolution are shown

in Fig. 5 and Fig. 4 for compressing SRResNet and
EDSR-8-128 respectively. Compared with Factor [7] and
Group [5], the SR images from our compressed model are
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Figure 1. Training and testing error of different compression method applied on DenseNet-12-40.
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Figure 2. Training and testing error of different compression method applied on VGG-16.

very close to the baseline in terms of both visual quality and
PSNR values.
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Figure 3. Training and testing error of different compression method applied on ResNet-56.

Ground-Truth: PSNR (dB) Factor: 26.70 dB Basis-S (ours): 26.79 dB Basis (ours): 27.01 dB Baseline: 27.17 dB

Ground-Truth: PSNR (dB) Factor: 25.86 dB Basis-S (ours): 25.94 dB Basis (ours): 25.96 dB Baseline: 26.45 dB

Ground-Truth: PSNR (dB) Factor: 32.47 dB Basis-S (ours): 32.48 dB Basis (ours): 32.68 dB Baseline: 32.69 dB

Figure 4. SR results for upscaling factor ×4. Network compression methods are applied on EDSR. PSNR values are reported.



Factor-SIC2: 26.44 dB Factor-SIC3: 26.47 dB Basis-14-64 (ours): 26.47 dB Basis-32-32 (ours): 26.57 dB Baseline: 26.65 dB

Factor-SIC2: 21.88 dB Factor-SIC3: 21.91 dB Basis-14-64 (ours): 21.91 dB Basis-32-32 (ours): 22.01 dB Baseline: 22.09 dB

Factor-SIC2: 39.68 dB Factor-SIC3: 39.80 dB Basis-14-64 (ours): 39.74 dB Basis-32-32 (ours): 39.94 dB Baseline: 40.28 dB

Figure 5. SR results for upscaling factor ×4. Network compression methods are applied on SRResNet. PSNR values are reported.
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