
Supplementary Material

A. Network Architecture

Module In Channel Out channel Kernel Size Down/Up/No Batch Norm Activation Func Edge Inpput Feature Input Product
VSR1 3 64 7 Down T ReLU Masked Edge Masked Image Size 256 Edge Part 1
VSR2 64 128 5 Down T ReLU VSR1 Out(Down) VSR1 Size 128 Edge Part 1

PConv1 128 256 3 Down T ReLU VSR2
PConv2 256 512 3 Down T ReLU PConv1
PConv3 512 512 3 Down T ReLU PConv2
PConv4 512 512 3 Down T ReLU PConv3
PConv5 512 512 3 Down T ReLU PConv4
PConv6 512 512 3 Down T ReLU PConv5
DeConv 512 512 4 Up F None PConv6

Partial-Deconv1 512+512 512 3&4 Up T LeakyReLu Deconv+PConv5
Partial-Deconv2 512+512 512 3&4 Up T LeakyReLu PartialDeconv1+PConv4
Partial-Deconv3 512+512 512 3&4 Up T LeakyReLu PartialDeconv2+PConv3
Partial-Deconv4 512+512 512 3&4 Up T LeakyReLu PartialDeconv3+PConv2
Partial-Deconv5 512+256 256 3&4 Up T LeakyReLu PartialDeconv4+PConv1
PixelAttention 256 256 No F None PartialDeconv5

Partial-Deconv5 256+128 128 3&4 Up T LeakyReLu PixelAttention+VSR2
VSR3(Deconv) 128+64 64 3&4 Up T LeakyReLu VSR2 Out PartialDeconv6+VSR1 Size 128 Edge

VSR4(NoDeconv) 64+3 64 3 No T LeakyReLu VSR1 Out VSR3+MaskedImage Size 256 Edge
Bottleneck Block 64 64 1&3&1 No T ReLU VSR4

Output 64+64 3 1 No F None Residual Block + VSR4 RGB Image

Table 3: Design Detail of Network Architecture. “In Channel” and “Out Channel” mean the number of channels in input
feature. “Kernel Size” is the size of convolutional or deconvolutional kernel. For Partial-Deconvolution layers, the first
number is the kernel size of partial convolution and the second number is the size of deconvolutional kernel. Down/Up/No
means down-sampling, up-sampling or no special operation on feature size. All down-sampling and up-sampling operations
are implemented with stride 2. BatchNorm is whether the layer contains batch normalization calculation. Activation Func
is the activation function chosen for the layer. Edge input is where the edge comes from. Feature input is where the feature
map comes from. Product means the final output tensor from the model.

A.1. Generator

The network has 8 down-sampling layers and 8 up-sampling layers, including 2 VSR layers in the start and 2 VSR layers
in the end of our model. As shown in Table 5. Both down-sampling and up-sampling operation use the stride length 2.
The convolution sizes are 7 and 5 for the first and second VSR layers respectively. The kernel sizes for edge generation are
consistent with that of convolution layers. The edge from VSR1 is down-sampled as the input of VSR 2. The implementation
of pixel attention is modified from contextual attention module, where we used the patch size of 1 and propagation size of 3.
A bottleneck residual block is added to the end of model.

A.2. Discriminator

The discriminator is constituted by a pre-trained and fixed VGG-16 network and a patch discriminator. For the patch
discriminator, we use 5 convolution layers, where the strides lengths are 2 and the kernel sizes are 4. Spectral normalization
is used. LeakyReLU is chosen to be the activation functions of the layers. For the output of discriminator, Sigmoid is used
as the activation function. With a fully convolutional design, the discriminator can accept inputs of different scales.

B. Proof

This appendix collects all the proofs omitted from the main text.

B.1. Proof of Theorem 1

This section provides a detailed proof for Theorem 1 which is committed from the main text. We first recall two lemmas
by Bartlett et al. [2] .

Lemma 1 (cf. [2], Lemma A.7). Suppose there are L weight matrices in a chain-like neural network. Let ("1, . . . , "L) be
given. Suppose the L weight matrices (A1, . . . , AL) lies in B1 ⇥ . . . ⇥ BL, where Bi is a ball centered at 0 with the radius



of si, i.e., Bi = {Ai : kAik  si}. Furthermore, suppose the input data matrix X is restricted in a ball centred at 0 with the
radius of B, i.e., kXk  B. Suppose F is a hypothesis function computed by the neural network. If we define:

H = {F (X) : Ai 2 Bi, A
u,v,s

t
2 B

u,v,s

t
}, (B.1)

where i = 1, . . . , L, (u, v, s) 2 IV , and t 2 {1, . . . , Lu,v,s
}. Let " =

P
L

j=1 "j⇢j
Q

L

l=j+1 ⇢lsl. Then we have the following
inequality:

N (H) 
LY

i=1

sup
Ai�12Bi�1

Ni, (B.2)

where Ai�1 = (A1, . . . , Ai�1), Bi�1 = B1 ⇥ . . .⇥ Bi�1, and

Ni = N
��

AiFAi�1(X) : Ai 2 Bi

 
"i, k · k

�
. (B.3)

Here, the radius of each covers are respectively,

"i =
↵i"

⇢i
Q

j>i
⇢jsj

, (B.4)

where

↵i =
1

↵̄

✓
bi
si

◆2/3

, (B.5)

↵̄ =
LX

j=1

✓
bj
sj

◆2/3

. (B.6)

Lemma 2 (cf. [2], Lemma 3.2). Let conjugate exponents (p, q) and (r, s) be given with p  2, as well as positive reals
(a, b, ") and positive integer m. Let matrix X 2 Rn⇥d be given with kXkp  b. Let HA denote the family of matrices
obtained by evaluating X with all choices of matrix A:

HA ,
�
XA|A 2 Rd⇥m, kAkq,s  a

 
. (B.7)

Then

logN (HA, ", k · k2) 

⇠
a2b2m2/r

"2

⇡
log(2dm). (B.8)

This covering bound constrains the hypothesis complexity contributed by a single weight matrix.

Proof of Theorem 1. Suppose the hypothesis spaces of the output functions F(A1,...,Ai�1) of the weight matrices Ai, i =
1, . . . , 5 are respectively Hi, i = 1, . . . , 5. From Lemma 1, we can directly get the following inequality,

logN (F|S)

 log

 
5Y

i=1

sup
Ai�12Bi�1

Ni

!



5X

i=1

log

0

B@ sup
(A1,...,Ai�1)
8j<i,Aj2Bj

N
��

AiF(A1,...,Ai�1)

 
, "i, k · k2

�
1

CA . (B.9)

Employ eq. (B.8), we can get the following inequality,

logN (F|S) 
5X

i=1

b2
i
kF(A1,...,Ai�1)(X)k2

�

"2
i

log
�
2W 2

�
. (B.10)



Meanwhile,

kF(A1,...,Ai�1)(X)k2
�
=k�i�1(Ai�1F(A1,...,Ai�2)(X))� �i�1(0)k2

k�i�1kkAi�1F(A1,...,Ai�2)(X)� 0k2

⇢i�1kAi�1k�kF(A1,...,Ai�2)(X)k2

⇢i�1si�1kF(A1,...,Ai�2)(X)k2. (B.11)

Therefore,

kF(A1,...,Ai�1)(X)k2
�
 kXk

2
i�1Y

j=1

s2
i
⇢2
i
. (B.12)

Suppose the covering number radius of the final output hypothesis space is ", then we can get the formulation of each
covering number radius "i throughout the neural network in term of the radius ". Specifically, motivated by the proof given
in [2], we can get the following equations:

"i+1 = ⇢isi+1"i. (B.13)

Then,

"5 = ⇢1

4Y

i=2

si⇢is5✏1, (B.14)

" = ⇢1

5Y

i=2

si⇢i✏1. (B.15)

Therefore,

"i =
⇢i
Q

i�1
j=1 sj⇢jQ5

j=1 sj⇢j
". (B.16)

Therefore,

logN (F|S , ", k · k2) 
log
�
2W 2

�
kXk

2
2

"2

 
5Y

i=1

si⇢i

!2 5X

i=1

b2
i

s2
i

. (B.17)

Here ⇢1 = ⇢2 = ⇢3 = ⇢4 = 1 and ⇢5 = ⇢. Therefore,

logN (F|S , ", k · k2) 
log
�
2W 2

�
kXk

2
2

"2

 
⇢

5Y

i=1

si

!2 5X

i=1

b2
i

s2
i

. (B.18)

which is exactly eq. (4.3) of Theorem 1.
The proof is completed.

B.2. Proof of Theorem 2

This section provides a detailed proof for Theorem 2 which is committed from the main text. We first recall a recent
lemma generally addressing the generalisation ability of GAN and a classic lemma in statistical learning theory.

Lemma 3 (cf. [34], p. 8, Theorem 3.1). Assume that the discriminator set F is even, i.e., f 2 F implies �f 2 F , and that
all discriminators are bounded by �, i.e., kfk1  � for any f 2 F . Let µ̂N be an empirical measure of an independent
and identical (i.i.d.) sample of size N drawn from a distribution µ. Assume ⌫N 2 G satisfies

dF (µ̂N , ⌫N )  inf
⌫2G

dF (µ̂N , ⌫) + �. (B.19)

Then with probability at least 1� �, we have

dF (µ, ⌫N )� inf
⌫2G

dF (µ, ⌫)  2R(µ)
N

(F) + 2�

s
2 log( 1

�
)

N
+ �, (B.20)

where



Computing the empirical Rademacher complexity of neural network could be extremely difficult and thus still remains an
open problem. Fortunately, the empirical Rademacher complexity can be upper bounded by the corresponding "-covering
number N(F , ", k · k2) as the following lemma states.

Lemma 4 (cf. [2], Lemma A.5). Suppose 0 2 H and all conditions in Lemma 3 hold. Then

R(µ)
N

(F)  inf
↵>0

 
4↵
p
n
+

12

n

Z p
n

↵

p
logN (l �H, ", k · k2)d"

!
. (B.21)

Proof of Theorem 2. Apply Lemma 4 directly to Theorem 1, we can get the following equation

R(µ)
N

 inf
↵>0

 
4↵
p
n
+

12

n

Z p
n

↵

p
logN (H�|D, ", k · |2)d"

!

 inf
↵>0

 
4↵
p
n
+

12

n

Z p
n

↵

R

"
d"

!

 inf
↵>0


4↵
p
n
+

12

n

p

R log

✓p
n

↵

◆�
. (B.22)

Apparently, the infinimum is reached uniquely at ↵ = 3
q

R

n
and the infinitum is as follows,

R(µ)
N


12R

N


1 + log

✓
N

3R

◆�
. (B.23)

Apply eq. (B.22) to eq. (B.20) of Lemma 3, we can directly get the fowling equation,

dF (µ, ⌫N )� inf
⌫2G

dF (µ, ⌫) 
24R

N

✓
1 + log

N

3R

◆
+ 2�

s
2 log( 1

�
)

N
+ �, (B.24)

which is exactly eq. (4.5). The proof is completed.

C. More results

PSV-SSIM P-UNet GatedConv Edge-Connect PRVS(Ours) CelebA-SSIM P-UNet GatedConv Edge-Connect PRVS(Ours)
10%-20% 0.953 0.959 0.956 0.964 10%-20% 0.979 0.976 0.978 0.982
20%-30% 0.910 0.920 0.917 0.928 20%-30% 0.958 0.954 0.957 0.962
30%-40% 0.858 0.873 0.869 0.885 30%-40% 0.930 0.927 0.928 0.937
40%-50% 0.780 0.815 0.811 0.832 40%-50% 0.896 0.892 0.891 0.905
50%-60% 0.678 0.684 0.698 0.724 50%-60% 0.816 0.805 0.801 0.832

PSV-PSNR P-UNet GatedConv Edge-Connect PRVS(Ours) CelebA-PSNR P-UNet GatedConv Edge-Connect PRVS(Ours)
10%-20% 30.76 31.42 31.05 32.00 10%-20% 32.68 32.69 32.53 33.23
20%-30% 27.62 28.12 28.05 28.79 20%-30% 29.33 29.45 29.19 29.83
30%-40% 25.51 25.80 25.98 26.62 30%-40% 26.87 27.01 26.72 27.32
40%-50% 23.81 23.93 24.29 24.87 40%-50% 24.90 24.98 24.67 25.34
50%-60% 21.56 21.06 21.94 22.48 50%-60% 22.08 21.83 21.44 22.53
PSV-MAE P-UNet GatedConv Edge-Connect PRVS(Ours) CelebA-MAE P-UNet GatedConv Edge-Connect PRVS(Ours)
10%-20% 0.0123 0.0126 0.0111 0.0105 10%-20% 0.0082 0.0085 0.0085 0.0077
20%-30% 0.0212 0.0207 0.0195 0.0182 20%-30% 0.0150 0.0154 0.0154 0.0140
30%-40% 0.0309 0.0300 0.0287 0.0266 30%-40% 0.0231 0.0233 0.0237 0.0216
40%-50% 0.0421 0.0406 0.0393 0.0363 40%-50% 0.0327 0.0329 0.0337 0.0306
50%-60% 0.0607 0.0621 0.0576 0.0534 50%-60% 0.0512 0.0529 0.0541 0.0482

Table 4: Quantitative comparisons on CelebA dataset and Paris Street View dataset. We compare our model with P-UNet[12],
Edge-Connect [16] and Gated Convolution [31]. We cropped the center 178⇥178 pixels in CelebA and resize them to
256⇥256.



PSV-SSIM P-UNet* PD PD+VSR PSV-PSNR P-UNet* PD PD+VSR PSV-MAE P-UNet* PD PD+VSR
10%-20% 0.954 0.959 0.963 10%-20% 30.92 31.36 31.88 10%-20% 0.0123 0.0113 0.0106
20%-30% 0.913 0.920 0.927 20%-30% 27.93 28.27 28.68 20%-30% 0.0208 0.0194 0.0184
30%-40% 0.865 0.874 0.882 30%-40% 25.91 26.17 26.49 30%-40% 0.0298 0.0282 0.0269
40%-50% 0.808 0.818 0.827 40%-50% 24.27 24.49 24.73 40%-50% 0.0400 0.0382 0.0369
50%-60% 0.698 0.707 0.716 50%-60% 22.04 22.19 22.31 50%-60% 0.0573 0.0556 0.0545

Table 5: Full comparisons of modules. The tests are conducted in Paris Street View dataset and the percentage in the first
column means the ratio of the mask. P-UNet* is P-UNet with changed hyper-parameter. PD means partial-deconvolution.
VSR means the VSR layer.

Figure 8: More result from Paris Street View and CelebA datasets (which is omitted in Section 5), from left to right: Ground
truth, masked image, recoverd edge, recovered image


