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A. Overview
We provide more details on the algorithms and experi-

ments described in the main paper. Sec. B presents more
examples of the network degeneracy. Sec. C evaluates the
effect of point-to-point loss Lp on the keypoint repeatabil-
ity. Sec. D illustrates the details of our feature descriptor
design. Sec. E gives more experiments on point cloud reg-
istration tasks. Sec. F presents visualizations of our USIP
keypoints in various datasets.

B. More Examples on Degeneracy
As analyzed in Sec. 5, our FPN degenerates when the

receptive field becomes sufficiently large, i.e., it has gained
sufficient global semantic information. The receptive field
of the FPN is controlled by two parameters: number of
keypoint proposals M and number of neighbors K in the
KNN feature aggregation. More specifically, the receptive
field size is proportional to K and inversely proportional to
M . In this section, we visualize the network degeneracy by
gradually enlarging the receptive field. Fig. 6 shows the de-
generacies when M = 64 and K = {9, 24, 32, 40, 48, 64}.
Fig. 7 shows the degeneracies when K = 9 and M =
{64, 24, 20, 16, 12, 9}.

C. Effect of λ in Point-to-Point Loss Lp

Sec. 3 of the main paper describes the point-to-point loss
Lp to penalize Qm ∈ Q for being too far from X. The
point-to-point loss Lp is added to the loss function with the
weight λ. Here, we show that our USIP is very robust to
the value of λ. Specifically, the repeatability of our USIP
keypoints remains almost the same over a wide range of
values for λ. Keypoint repeatability is illustrated in Fig. 2
with various λ. Fig. 2 shows that the USIP keypoints are
highly repeatable even when λ is small. This is probably
because our design to limit the receptive field already guides
the network to learn repeatable keypoints even without the
point-to-point loss. On the other hand, the network fails to
converge when λ is too large because the point-to-point loss
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dominates the training process. Nonetheless, training the
network without the point-to-point loss does not ensure the
keypoints to be close to the input point cloud. The top row
of Fig. 1 shows keypoints from our USIP detector trained
with λ = 6, i.e., with point-to-point loss. They are close
to the input point cloud. In comparison, the bottom row of
Fig. 1 shows from our USIP detector trained without point-
to-point loss, i.e., λ = 0. These are less desirable keypoints
that are farther from the input point cloud.

Figure 1. Visualization of USIP keypoints with different λ in
Point-to-Point loss. First row λ = 6, second row λ = 0.

D. Our Descriptor a.k.a “Our Desc.”

Fig 3 shows the network design of “Our Desc.” inspired
by 3DFeat-Net [6] as mentioned in Sec. 6.2 of the main pa-
per. Given the output (Q,Σ) from FPN, a ball Ωm(Qm, r)
of points from the point cloud X within a radius r is built
around each Qm ∈ Q. A keypoint descriptor fm ∈ RL is
extracted for each Ωm. The descriptor can be trained with
either weak [6] or strong supervision [7, 3]. We improve
the keypoint descriptor training by utilizing the keypoint
saliency uncertainty Σ in Sec. D.1, D.2, and E.
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Figure 2. Relative repeatability with different weight λ for the Point-to-Point Loss Lp. Number of keypoints is fixed to 128. Left to right:
KITTI, Oxford, Redwood, ModelNet40.

Figure 3. Network architecture of “Our Desc.”.

D.1. Weak Supervision

Weak supervision of the descriptor is based on a triplet
loss and the ground truth coarse registrations of the point
clouds in the training dataset. Similar to [6], point clouds
from the dataset are selected as the anchor samples during
training. All overlapping pairs of point clouds to the anchor
are defined as positive samples, while non-overlapping pairs
of point clouds are defined as the negative samples. We
denote the sets of keypoint descriptors extracted from the
anchor, positive and negative samples as Fanc, Fpos and Fneg,
respectively. We generate these training samples from the
Oxford RobotCar and KITTI datasets. More formally, the
triplet loss is given by:

Lw
dc =

M�

m=1

wm

�
min

fi∈Fpos
�fm−fi�2− min

fj∈Fneg
�fm−fj�2+γ

�

+

,

(1)
where fm ∈ Fanc is a descriptor from the anchor sample.
For each descriptor fm ∈ Fanc, we minimize the Euclidean
distance to its nearest neighbor fi ∈ Fpos and maximize
the Euclidean distance to its nearest neighbor fj ∈ Fneg.
In addition, a normalized weight wm is added to our triplet
loss. wm is derived from our USIP keypoint saliency uncer-
tainty σm that indicates the reliability of Qm and fm. More
specifically:

wm = M · ŵm�M
j=1 ŵj

, ŵm = �ξ − σm�+, (2)

where ξ is a threshold serves as the upper bound of σm.

D.2. Strong Supervision

We do strong supervision of the descriptor network on
datasets with ground truth poses, i.e., SceneNN [1] and “3D
reconstruction dataset” [7]. The loss function for strong su-
pervision defined on a pair of overlapping point clouds X
and X� with ground truth poses G ∈ SE(3) and G� ∈ SE(3)
is given by:

Ls
dc =

M�

m=1

wm

�
�fm − f �

i�2 − �fm − f �
j�2 + γ

�

+

. (3)

fm and f �
i are keypoint descriptors from X and X�, respec-

tively. Additionally, f �
i is a descriptor with keypoint loca-

tion Q�
i that is within a distance ρ from the keypoint location

Qm of the descriptor fm, i.e., �Qm −GG�−1Q�
i�2 < ρ. To

achieve hard negative mining, we randomly select 50% of
f �
j from X� with the distance between the keypoint locations
Q�

j and Qm larger than ρ. The other 50% are chosen from
keypoints with shortest but larger than ρ keypoint distances
to Qm.

E. More Point Cloud Registration Results
We follow the experimental setup and pipeline of

3DFeat-Net [6] to provide more evaluation results on point
cloud registration. More specifically, we compare the per-
formance of our USIP detector and “Our Desc.” with other
existing keypoint detector and descriptors. The evaluations
are done on the Oxford RobotCar and KITTI datasets pre-
pared by [6]. Refer to Sec. 6.2 of the main paper for the
details of the registration steps. A fixed number of 256
keypoints is extracted from each point cloud. We extract
the keypoints without Non-Maximum-Supression (NMS).
Furthermore, keypoints with high saliency uncertainty, i.e.,
large σ, are filtered out.

Datasets The Oxford RobotCar consists of 40 traversals
on the same route over a year. 3D point clouds are built
by accumulating the 2D scans from SICK LMS-151 Li-
DAR with the GPS/INS readings. We use 35 traversals, i.e.
21,875 point clouds for training. The remaining 5 traver-
sals, i.e., 828 point clouds and 3,426 overlapping pairs are



Method Oxford KITTI
RTE (m) RRE (◦) Fail % Inlier % # Iter RTE (m) RRE (◦) Fail % Inlier % # Iter

ISS[8] + FPFH[4] 0.40± 0.29 1.60± 1.02 7.68 8.6 7171 0.33± 0.27 1.04± 0.77 39.00 8.8 8000
ISS[8] + SI[2] 0.42± 0.31 1.61± 1.12 12.55 4.7 9888 0.35± 0.31 1.11± 0.93 41.86 4.6 9401

ISS[8] + USC[5] 0.32± 0.27 1.22± 0.95 5.98 8.6 7084 0.27± 0.28 0.83± 0.76 18.62 7.7 8149
ISS[8] + CGF[3] 0.43± 0.32 1.62± 1.10 12.64 4.9 9628 0.23± 0.25 0.69± 0.60 8.90 8.4 7670

ISS[8] + 3DMatch[7] 0.49± 0.37 1.78± 1.21 30.94 5.4 9131 0.30± 0.28 0.80± 0.67 7.14 8.4 7165
3DFeat-Net[6] 0.30± 0.26 1.07± 0.85 1.90 13.7 2940 0.26± 0.26 0.56± 0.46 0.57 12.9 3768

USIP + Our Desc. 0.28± 0.26 0.81± 0.74 0.93 28.1 523 0.21± 0.24 0.42± 0.32 0.24 28.0 600
Table 1. Geometric registration performance on Oxford RobotCar and KITTI. The combination of our USIP keypoint detector and “Our
Desc.” outperforms existing methods in all criteria with around 2× inlier ratio.
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Figure 4. Registration failure rate versus maximum RANSAC iterations in Oxford RobotCar (left) and KITTI (right). Note that the x
axis is in logarithmic scale. Our USIP detector + “Our Desc.” (red line) shows very little drop in performance with decreasing number of
RANSAC iterations.

used for evaluation. Random rotations around the up-axis
are applied to each evaluation point cloud. In KITTI, 3D
point clouds are directly provided by a Velodyne HDL-64E.
We use the 2,831 overlapping pairs of point clouds prepared
by [6] for registration evaluation.

Performance Tab. 1 shows the point cloud registration
performances. Our USIP detector + “Our Desc.” outper-
forms previous methods with the lowest registration failure
rate (Fail %), Relative Translational Error (RTE), Relative
Rotation Error (RRE), and highest inlier ratio (Inlier %). In
particular, our registration failure rate and inlier ratio are
respectively 50% and 2x of the second best keypoint detec-
tor + descriptor. We further analyze the performance over
different number of RANSAC iterations. The registration
failure rate versus the maximum number of RANSAC itera-
tions is shown in Fig. 4. Due to high repeatability, our USIP
detector (red line) shows very little drop in performance
with decreasing number of RANSAC iterations, while all
other algorithms show rapid drops in performances. Addi-
tionally, we replace our USIP detector + “Our Desc.” with
Random Sampling + “Our Desc.” to demonstrate the effec-

tiveness of our USIP detector. It can be seen from Fig. 4
that the performance of Random Sampling + “Our Desc.”
(black line) drops as quickly as other methods with decreas-
ing number of RANSAC iterations.

Effect of USIP Keypoint Saliency Uncertainty Σ on De-
scriptor Training We show that the keypoint salicency
uncertainty Σ from our USIP detector improves the perfor-
mance of “Our Desc.”. To this end, we compare the per-
formances of “Our Desc.” trained with USIP and randomly
sampled keypoints, respectively. In particular, the weight
wm from Eq. 1 or Eq. 3 is set to 1 for the randomly sampled
keypoints. We denote the descriptor trained with randomly
sampled keypoints as “Desc. w. RS”. Tab. 2 shows the reg-
istration failure rates of “Desc. w. USIP” and “Desc. w.
RS”. The results show that “Desc. w. USIP” performs bet-
ter than “Desc. w. RS”, which means that keypoints and
saliency uncertainty Σ from our USIP detector improve de-
scriptor training.
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Figure 5. Point cloud registration error rate (%) on KITTI (trained on Oxford). Dash line is the best performance of existing methods.
λ = 0.5 in (a) (b).

Failure % Oxford KITTI
Desc w. USIP Desc w. RS Desc w. USIP Desc w. RS

USIP 0.93 1.20 0.24 1.02
Table 2. Registration failure rate for “Our Desc.” trained keypoints
from our USIP detector and randomly sampled keypoints.

Effect of Parameters M,K,λ We demonstrate the point
cloud registration failure rate (%) in Fig. 5, when various
USIP detector parameters, M,K,λ, are selected. In Fig. 5
we use the same descriptor mentioned in Sec. D. As shown
in Fig. 5, our method outperforms existing methods over
a wide range of M,K,λ. We notice our network perfor-
mance decreases significantly when M is too small or K is
too large, i.e., the receptive is too large. This further veri-
fies our design of limiting the receptive field. In addition,
Fig. 5 shows that the registration failure rate remains satis-
fying when λ is small. This is consistent with Fig. 2 that our
USIP is able to detect repeatable keypoints even without the
point-to-point loss. Nonetheless, it is still important to in-
clude the point-to-point loss to ensure that the keypoints are
close to the input point cloud.

F. Qualitative Visualization of USIP Keypoints
We show more visualizations of the keypoints detected

from our USIP detector on ModelNet40, KITTI, Oxford
RobotCar, Redwood in Fig. 8, 9, 10, 11, respectively. NMS
and Σ thresholding are applied here. A limitation of our
USIP detector is shown in Fig. 8, where there are no or very
few keypoints on objects that are highly symmetrical or with
smooth surfaces. The saliency uncertainties Σ of the key-
points detected on these objects are large, thus discarded by
the Σ thresholding.



Figure 6. Visualization of FPN degeneracy. M = 64 and from left to right: K = 9, 24, 32, 40, 48, 64, i.e., receptive field of FPN increases
from left to right.

Figure 7. Visualization of FPN degeneracy. K = 9 and from left to right: M = 64, 24, 20, 16, 12, 9, i.e., receptive field of FPN increases
from left to right.



Figure 8. Visualization of USIP keypoints on ModelNet40. Best view with color and zoom-in.



Figure 9. Visualization of USIP keypoints on KITTI with our USIP detector trained on Oxford RobotCar dataset. Best view with color and
zoom-in.



Figure 10. Visualization of USIP keypoints on Oxford RobotCar. Best view with color and zoom-in.



Figure 11. Visualization of USIP keypoints on Redwood with our USIP detector trained on “3D Reconstruction Dataset” [7]. Best view
with color and zoom-in.
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