
Supplementary Material
DensePoint: Learning Densely Contextual Representation for Efficient Point

Cloud Processing

Yongcheng Liu Bin Fan Gaofeng Meng Jiwen Lu Shiming Xiang Chunhong Pan

A. Outline
This supplementary material provides: (1) further in-

vestigations of the proposed DensePoint (Sec B); (2) more
shape retrieval examples of DensePoint and some analysis
(Sec C); (3) network configuration details (Sec D). (4) train-
ing details (Sec E)

B. Further Investigations
In this section, we provide further investigations of

DensePoint on four aspects. Specifically, the discussion of
neighborhood method is presented in Sec B.1. The effect
of dropout on fN (x) in Eq. (4) is analyzed in Sec B.2. The
impact of network depth on classification performance is
investigated in Sec B.3. The memory and runtime are sum-
marized in Sec B.4. All the investigations are conducted on
ModelNet40 dataset.

B.1. Neighborhood Method

In the main paper, the local convolutional neighborhood
N (x) in Eq. (1) is set to be a spherical neighborhood, from
which a fixed number of neighbors are randomly sampled
for batch processing. We compare this strategy (Random-
In-Sphere) with another typical one, i.e., k-nearest neighbor
(k-NN). For a fair comparison, the models with these two
strategies are configured with the same settings. Table I
summarizes the results.

As can be seen, the model with Random-In-Sphere per-
forms better. We speculate that the model with k-NN will
suffer from the distribution inhomogeneity of points. In this
case, the contextual learning in DensePoint will be less ef-
fective, as the receptive fields will be confined to a local re-
gion with large density, which leads to ignoring those sparse
points that are essential for recognizing the implicit shape.
By contrast, Random-In-Sphere can have a better coverage
of points even in the case of inhomogeneous distribution.

B.2. Dropout on fN (x) in Eq. (4)

The dropout technique can force the whole network to
behave as an ensemble of a lot of subsets and reduce the risk

Table I. The results (%) of two neighborhood strategies. The num-
ber of neighbors is equally set in each layer of the two models.

neighborhood method acc.
k-NN 91.3
Random-In-Sphere 93.2

Table II. The results (%) of dropout with different ratios applied
on fN (x) in Eq. (4).

ratio (%) 0 10 20 30 40 50
acc. 92.9 92.8 93.2 93.0 92.8 92.5

Table III. The results (%) of different network depths (fully con-
nected layers are not included).

#layers #params #FLOPs/sample acc.
6 0.53M 148M 92.1
9 0.56M 510M 92.9

11 0.67M 651M 93.2
15 0.78M 779M 93.0
19 0.88M 1222M 92.7
23 1.03M 1416M 92.6

of model overfitting. To analyze its effect on DensePoint,
we apply it with different ratios on fN (x) in Eq. (4). The
results are summarized in Table II. As can be seen, the best
result of 93.2% can be achieved with a dropout ratio of 20%.

B.3. Network Depth

We further explore the impact of the network depth (fully
connected layers are not included) on classification per-
formance. The results are summarized in Table III. Sur-
prisingly, a 6-layer network equipped with DensePoint can
achieve an accuracy of 92.1% with only 0.53M params and
148M FLOPs/sample. This even outperforms PointNet++
[33] (accuracy 90.7%, params 1.48M [26], FLOPs/sample
1684M [26]) by 15% in error rate, whilst being one order
of magnitude faster in terms of FLOPs/sample. We also ob-
serve that it is unnecessary to develop a very deep network
(e.g., 23 layers) with DensePoint, as it increases complex-
ity without bringing any gain. Eventually, the best result
of 93.2% can be reached with acceptable complexity by an

1



Table IV. Time and memory of classification network, where k is network
narrowness, L is network depth. The statistics of all the models are sum-
marized with batch size 16 on NVIDIA TITAN Xp, and time is the mean
time of 1000 tests. The compared models are tested using their available
official codes.

method #points Time (ms) Memory (GB)
training test training test

PointNet [31] 1024 55 22 1.318 0.469
PointNet++ [33] 1024 195 47 8.311 2.305
DGCNN [52] 1024 300 68 4.323 1.235
PointCNN [26] 1024 55 38 2.501 1.493
Ours (k=24, L=11) 1024 21 10 3.745 1.228
Ours (k=24, L=6) 1024 10 5 1.468 0.886

11-layer network.

B.4. Memory and runtime

The memory and runtime of the proposed DensePoint
are summarized in Table IV. As can be seen, the model
(L=11) is competitive while another model (L=6) is the best
one in terms of efficiency. Actually, the memory and train-
ing time issues in dense connection mode are greatly al-
leviated due to the shallow design of DensePoint and our
highly-efficient implementation. Moreover, although ex-
tremely deep network could be unnecessary for 3D cur-
rently, in case of very deep DensePoint in the future, the
technique of Shared Memory Allocations can be applied to
achieve linear memory complexity.

C. Shape Retrieval
In this section, we show more shape retrieval examples

in Fig. 1. As can be seen, compared with PointNet [31],
our DensePoint obtains superior shape identification results.
Specifically, PointNet is confused between the query “bot-
tle” and the sample “vase” due to their similar shapes. Nev-
ertheless, DensePoint with densely contextual semantics ac-
quired can identify them accurately. We notice that Dense-
Point could also be confused for some very alike shapes,
e.g., the query “bench” and the sample “tv stand”. This
could be improved by learning to weight multi-level contex-
tual information instead of identically aggregating all levels
of information. We leave it as future work.

D. Network Configuration Details
In this section, we present the configuration details of

three networks on shape classification, shape part segmen-
tation and normal estimation, respectively. For clearness,
we describe the layer and corresponding setting format as
follows:

PPool: [downsampling rate, neighborhood radius, #number
of neighbors, SLPφ(#input channels, #output channels)].
The global pooling is achieved by directly applying PConv
to convolve all points.

ePConv: [neighborhood radius, #number of neighbors,
SLPφ̃(#input channels, #output channels, #group number),

SLPψ(#input channels, #output channels), dropout ratio].

FP (feature propagation layer): MLP(#channels, · · · ).
Feature propagation layer [33] is used for transforming
the features that are concatenated from current interpolated
layer and long-range connected layer. We employ a multi-
layer perceptron (MLP) to implement this transformation.

FC (fully connected layer): [(#input channels, #output
channels), dropout ratio]. Note that the dropout technique
is applied for all FC layers except for the last FC layer (used
for prediction).

In addition, except for the last prediction layer, all layers
(including the inside perceptrons) are followed with batch
normalization and ReLU activator. The output shape is in
the format of (#feature dimension, #number of points).

D.1. Shape Classification Network

The configuration details of shape classification network
are presented in Table VI. The network has 14 layers in to-
tal, which comprises 3 PPools (the last one is global pooling
layer) and 2 DensePoints (the 1st one has 3 layers while the
2nd one has 5 layers), followed by 3 FC layers.

D.2. Shape Part Segmentation Network

Table V summarizes the configuration details of shape
part segmentation network. As it shows, the network has
23 layers in total, which comprises 4 PPools, 3 DensePoints
(4 layers, 6 layers and 3 layers in 2nd stage, 3rd stage and
4th stage respectively) and 4 FP layers, followed by 2 FC
layers. As in [31, 33], we concatenate the one-hot encoding
(16-d) of the object label to the last feature layer.

D.3. Normal Estimation Network

The normal estimation network is presented in Table VII.
It is almost the same as the segmentation network, except
for three aspects: (1) the input becomes 1024-d and the one-
hot encoding becomes 40-d for ModelNet40 dataset; (2) the
settings of some layers are slightly changed to be consistent
with the 1024-d input; (3) the final output becomes 3-d for
normal prediction. As done in the segmentation network,
we also concatenate the one-hot encoding (40-d) of the ob-
ject label to the last feature layer.

E. Training Details

Our DensePoint is implemented using Pytorch. The
Adam optimization algorithm is employed for training, with
a mini-batch size of 32. The momentum for batch normal-
ization starts with 0.9 and decays with a rate of 0.5 every
20 epochs. The learning rate begins with 0.001 and decays
with a rate of 0.7 every 20 epochs. The weight is initialized
using the techniques introduced by He et al. [1].

2



Table V. The configuration details of shape part segmentation network. “long-range” indicates the long-range connections (see Fig. 3(b) in
the main paper). K is the number of classes.

stage layer type setting detail output shape long-range
- Input - (3, 2048) FP4

1 PPool [1/2, 0.1, 32, (3, 64)] (64, 1024) FP3

2

PPool [1/4, 0.2, 64, (64, 128)] (128, 256)
ePConv [0.3, 32, (128, 96, 2), (96, 24), 20%] (24, 256)
ePConv [0.3, 32, (152, 96, 2), (96, 24), 20%] (24, 256)
ePConv [0.3, 32, (176, 96, 2), (96, 24), 20%] (24, 256)
ePConv [0.3, 32, (200, 96, 2), (96, 24), 20%] (24, 256)

The output of DensePoint in 2nd stage (224, 256) FP2

3

PPool [1/4, 0.3, 32, (224, 192)] (192, 64)
ePConv [0.5, 16, (192, 96, 2), (96, 24), 20%] (24, 64)
ePConv [0.5, 16, (216, 96, 2), (96, 24), 20%] (24, 64)
ePConv [0.5, 16, (240, 96, 2), (96, 24), 20%] (24, 64)
ePConv [0.5, 16, (264, 96, 2), (96, 24), 20%] (24, 64)
ePConv [0.5, 16, (288, 96, 2), (96, 24), 20%] (24, 64)
ePConv [0.5, 16, (312, 96, 2), (96, 24), 20%] (24, 64)

The output of DensePoint in 3rd stage (336, 64) FP1

4

PPool [1/4, 0.8, 32, (336, 360)] (360, 16)
ePConv [0.8, 8, (360, 96, 2), (96, 24), 20%] (24, 16)
ePConv [0.8, 8, (384, 96, 2), (96, 24), 20%] (24, 16)
ePConv [0.8, 8, (408, 96, 2), (96, 24), 20%] (24, 16)

The output of DensePoint in 4th stage (432, 16)
FP1 (768, 512, 512) (512, 64)
FP2 (736, 384, 384) (384, 256)
FP3 (448, 256, 256) (256, 1024)
FP4 (259, 128, 128) (128, 2048)
FC [(128+161, 128), 50%] (128, 2048)
FC [(128, K), -]→ softmax (K, 2048)

1 This is the one-hot encoding of the object label on ShapeNet part dataset.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-
mance on ImageNet classification. In ICCV, pages 1026–
1034, 2015. 2

3



Table VI. The configuration details of shape classification network. K is the number of classes.
stage layer type setting detail output shape

- Input - (3, 1024)

1

PPool [1/2, 0.25, 64, (3, 96)] (96, 512)
ePConv [0.2, 32, (96, 96, 2), (96, 24), 20%] (24, 512)
ePConv [0.2, 32, (120, 96, 2), (96, 24), 20%] (24, 512)
ePConv [0.2, 32, (144, 96, 2), (96, 24), 20%] (24, 512)

The output of DensePoint in 1st stage (168, 512)

2

PPool [1/4, 0.3, 64, (168, 144)] (144, 128)
ePConv [0.4, 16, (144, 96, 2), (96, 24), 20%] (24, 128)
ePConv [0.4, 16, (168, 96, 2), (96, 24), 20%] (24, 128)
ePConv [0.4, 16, (192, 96, 2), (96, 24), 20%] (24, 128)
ePConv [0.4, 16, (216, 96, 2), (96, 24), 20%] (24, 128)
ePConv [0.4, 16, (240, 96, 2), (96, 24), 20%] (24, 128)

The output of DensePoint in 2nd stage (264, 128)

3

PPool [-, -, 128, (264, 512)] (512, )
FC [(512, 512), 50%] (512, )
FC [(512, 256), 50%] (256, )
FC [(256, K), -]→ softmax (K, )

Table VII. The configuration details of normal estimation network. “long-range” indicates the long-range connections (see Fig. 3(b) in the
main paper).

stage layer type setting detail output shape long-range
- Input - (3, 1024) FP4

1 PPool [1, 0.2, 32, (3, 64)] (64, 1024) FP3

2

PPool [1/4, 0.2, 32, (64, 128)] (128, 256)
ePConv [0.3, 32, (128, 96, 2), (96, 24), 20%] (24, 256)
ePConv [0.3, 32, (152, 96, 2), (96, 24), 20%] (24, 256)
ePConv [0.3, 32, (176, 96, 2), (96, 24), 20%] (24, 256)
ePConv [0.3, 32, (200, 96, 2), (96, 24), 20%] (24, 256)

The output of DensePoint in 2nd stage (224, 256) FP2

3

PPool [1/4, 0.3, 32, (224, 192)] (192, 64)
ePConv [0.5, 16, (192, 96, 2), (96, 24), 20%] (24, 64)
ePConv [0.5, 16, (216, 96, 2), (96, 24), 20%] (24, 64)
ePConv [0.5, 16, (240, 96, 2), (96, 24), 20%] (24, 64)
ePConv [0.5, 16, (264, 96, 2), (96, 24), 20%] (24, 64)
ePConv [0.5, 16, (288, 96, 2), (96, 24), 20%] (24, 64)
ePConv [0.5, 16, (312, 96, 2), (96, 24), 20%] (24, 64)

The output of DensePoint in 3rd stage (336, 64) FP1

4

PPool [1/4, 0.8, 32, (336, 360)] (360, 16)
ePConv [0.8, 8, (360, 96, 2), (96, 24), 20%] (24, 16)
ePConv [0.8, 8, (384, 96, 2), (96, 24), 20%] (24, 16)
ePConv [0.8, 8, (408, 96, 2), (96, 24), 20%] (24, 16)

The output of DensePoint in 4th stage (432, 16)
FP1 (768, 512, 512) (512, 64)
FP2 (736, 384, 384) (384, 256)
FP3 (448, 256, 256) (256, 1024)
FP4 (259, 128, 128) (128, 1024)
FC [(128+402, 128), 50%] (128, 1024)
FC [(128, 3), -] (3, 1024)

2 This is the one-hot encoding of the object label on ModelNet40 dataset.

4



Query Top-10 retrieval CAD models

bottle

bench

chair

stool

lamp

sink

bookshelf

Figure 1. Retrieval examples on ModelNet40 dataset. Top-10 matches are shown for each query, with the 1st line for PointNet [31] and the
2nd line for our DensePoint. The mistakes are highlighted in red.

5


