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A. Overview
In this document, we provide additional detail on Mete-

orNet as presented in the main paper. We present additional
results on the accuracy of action recognition (Sec. B) and
the outlier ratio in scene flow estimation (Sec. C). In Sec-
tion D, we provide more details on the architectures used
in various experiments. In Section E, we provide a runtime
analysis for our model on the Synthia dataset. In Section
F, we present the proof to our theorem. In Section G we
provide qualitative example results for various experiments.
Lastly, in Section H, we give a brief rationale for the name
of our neural network.

B. MSRAction3D Per-class Accuracy
In the main paper, we showed that MeteorNet with mul-

tiple frames of point clouds as input outperforms various
baselines. We obtained all possible clips of a certain length
from a full-length point cloud sequence and computed the
softmax classification scores on them individually. The fi-
nal prediction is the average of softmax scores of all clips.
We explored using extremely long sequence and its effect
on final classification accuracy. The classification accuracy
saturates at a sequence length of 24. Given the 15fps frame
rate in MSRAction3D, a sequence length of 24, i.e. 1.6s, is
close to the average length of a complete action.

In Figure 1, we illustrate the per-class accuracy gain of
MeteorNet-cls with 24 frames as input compared to Point-
Net++ with 1 frame as input.

We can see that categories that may only be discrimi-
nated when observed over time show a significant gain in
accuracy when using a sequence of point clouds as input.
Categories that can be easily discriminated without tempo-
ral information show little or a negative gain in accuracy.
For example, the categories “forward punch”, “horizontal
arm wave” and “draw x” show a large improvement in ac-
curacy. These three categories are similar since they all in-
volve stretching arms forward and thus requires temporal
information to be correctly classified. Categories such as
“pick up & throw” or “golf waving” have a very discrimina-
tive posture even in single frames and therefore show only
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Figure 1: Per-class accuracy gain (%) of 24 frames MeteorNet-cls
compared to PointNet++.

Method Frames
Threshold for outlier (m)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FlowNet3D [1] 2 6.88 4.28 2.19 1.31 1.02 0.77 0.59 0.54

MeteorNet-flow
(direct)

3 8.43 3.71 1.87 1.12 0.82 0.65 0.55 0.42
4 6.67 3.32 1.44 1.09 0.84 0.65 0.53 0.42

MeteorNet-flow
(chain)

3 6.35 3.72 2.39 1.49 1.16 0.92 0.74 0.62
4 7.88 3.50 1.95 1.27 0.85 0.72 0.63 0.58

Table 1: Scene flow EPE outlier ratio (%) given different threshold
values.

the slightest or negative accuracy gain.
The results support our intuition that the Meteor mod-

ule effectively captures dynamic content of point cloud se-
quences.

C. Outlier Ratio of Scene flow

The ratio of outliers is an important metric that evalu-
ates the robustness of scene flow estimation. We investigate
scene flow outlier ratio on KITTI scene flow dataset [2]. We
set different EPE threshold for determining outliers and list
the outlier ratio in Table 1.
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Figure 2: The architecture of (a) Meteor-rel module and (b) Meteor-ind module. The dashed box denotes the neighborhood N (p
(t)
i )

of p(t)i (in bold) from which all arrows start. The neighborhood N can be determined by direct grouping or chained-flow grouping. In
the figure, x, t and f denotes the 3D spatial coordinate, time coordinate and feature vector of a point respectively; “MLP” denotes ζ in
Equation (1) and (2), which is the multi-layer individually and independently perceptron applied.

As we can see, with more frames as input, MeteorNet-
flow can reduce outlier ratio over FlowNet3D. Besides,
MeteorNet-flow using chained-flow grouping with 3 frames
as input has the best outlier ratio for a small threshold. How-
ever, when the threshold gets larger , MeteorNet-flow using
direct grouping is advantageous.

D. Architecture Details
In this section, we provide details on the architectures

used in the main paper. We used the same notation as the
main paper and assume the input point cloud sequence is
({p(1)i }, . . . , {p

(T )
i }) ∈ X1 × X2 × . . . × XT and the local

spatiotemporal neighborhood of p(t)i is N (p
(t)
i ).

D.1. Meteor Module Architecture

For every point p(t)i in the point cloud sequence {p(t)i },
Meteor module calculates its updated feature vector h(p(t)i ).
In Section 3.2 of the main paper, we presented two instanti-
ation of h.

The first instantiation is for applications where point cor-
respondence is important, such as scene flow. For each
(p(t

′)
j , p

(t)
i ) pair, we pass the feature vectors of two points

and their 4D position difference into to an MLP with shared
weights ζ, followed by an element-wise max pooling

h(p
(t)
i ) = MAX

p
(t′)
j ∈N (p

(t)
i )

{ζ(f (t
′)

j , f
(t)
i ,x

(t′)
j − x

(t)
i , t′ − t)}

(1)
This instantiation is able to learn the relation between two
frames of point clouds. We name the resulting Meteor mod-
ule Meteor-rel. The architecture of Meteor-rel is illustrated
in Figure 2(a).

The second instantiation is for applications where point
correspondence is not important, such as semantic segmen-

tation. We pass the feature vector of p(t
′)

j and 4D posi-

tion difference between p(t
′)

j and p(t)i to ζ followed by an
element-wise max pooling

h(p
(t)
i ) = MAX

p
(t′)
j ∈N (p

(t)
i )

{ζ(f (t
′)

j ,x
(t′)
j − x

(t)
i , t′ − t)} (2)

We name the resulting Meteor module Meteor-ind. Its ar-
chitecture is illustrated in Figure 2(b).

Similar to pooling in CNN, the output of both Meteor-ind
and Meteor-rel modules can be downsampled by farthest-
point-sampling.

D.2. MeteorNet-cls Architecture

MeteorNet-cls C takes a point cloud sequence {p(t)i } as
input and produces a classification score c for the whole
sequence

c = C({p(1)i }, {p
(2)
i }, . . . , {p

(T )
i })

MeteorNet-cls consists of four Meteor-ind modules and
used Early fusion where the points from different frames
are mixed at the first layer. The final Meteor-ind module
will max-pool the point cloud to be only one point. The
final fully-connected (FC) layer is 20 dimensional which
corresponds to the number of classes in the MSRAction3D
dataset. The final FC layer is deployed with a dropout layer
with dropout rate of 0.5 for regularization. The architecture
of MeteorNet-cls is illustrated in Figure 3.

D.3. MeteorNet-seg Architecture

MeteorNet-seg S takes a point cloud sequence {p(t)i } as
input and produces a classification score c(t)i for every point
in the sequence

({c(1)i }, . . . , {c
(T )
i }) = S({p

(1)
i }, {p

(2)
i }, . . . , {p

(T )
i })
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Figure 3: The architecture of MeteorNet-cls.

MeteorNet-seg-s MeteorNet-seg-m MeteorNet-seg-l
mlp 1 [32,32,64] [32,32,128] [32,64,128]
mlp 2 [64,64,128] [64,64,256] [64,128,256]
mlp 3 [128,128,256] [128,128,512] [128,256,512]
mlp 4 [256,256,512] [256,256,1024] [256,512,1024]

Table 2: Architecture configuration for different versions of
MeteorNet-seg. “mlp {1,2,3,4}” corresponds to MLPs of Meteor
modules in Figure 4.

MeteorNet-seg consists of four Meteor-ind modules and
used Early fusion where the points from different frames
are mixed at the first layer. The point cloud will first
be downsampled and then upsampled to the original point
cloud through feature propagation layers [4]. We added skip
connections so that local features at early stages of the net-
work can be used in the feature propagation. The output
has 12 channels, same number as the number of classes in
the Synthia dataset. The final FC layer is deployed with
a dropout layer with dropout rate of 0.5 for regularization.
The architecture of MeteorNet-seg is illustrated in Figure 4.

An ablation study in Section 5.2 of the main paper ex-
plored several architecture choices. We listed the architec-
ture configurations in Table 2. Compared to MeteorNet-
seg-s, MeteorNet-seg-m has a larger bottleneck dimension
at each max pooling layer. Compared to MeteorNet-seg-m,
MeteorNet-seg-l has the same max pooling dimensions but
larger dimensions in non-bottleneck layers.

D.4. MeteorNet-flow Architecture

MeteorNet-flow F takes a point cloud sequence {p(t)i }
as input and estimates a flow vector f(T )

i for every point in
frame T

{f(T )
i } = F({p

(1)
i }, {p

(2)
i }, . . . , {p

(T )
i })

MeteorNet-flow used Late fusion. It first employs per-
frame set abstraction layers [4] to downsample the point
clouds and learn local features for each frame individually.
Then, one Meteor-rel module is used to aggregate informa-
tion from all frames. Only the points in frame T are selected
for subsequent part of the network. After further processing
with feature propagation, MeteorNet-flow obtains the per-
point flow vector for every point in frame T . We added skip
connections so that local features at early stages of the net-

work can be used in feature propagation. The architecture
of MeteorNet-flow is illustrated in Figure 7.

E. Model Run Time Analysis

We use MeteorNet-seg on the Synthia semantic segmen-
tation test set for runtime analysis. We tested with 8,192
points for the whole scene in each frame. We used a single
GTX 1080 Ti GPU and Intel Core i7 CPU. The deep learn-
ing framework is Tensorflow 1.9.0. We performed a grid
search over batch size and number of frames. The results for
direct grouping and chained-flow grouping are illustrated in
Figure 5 and Figure 6 respectively.

Interpolating and chaining flow introduces an additional
computational overhead for chained-flow grouping. For
2 frames and a batch size of 1, MeteorNet-seg with di-
rect grouping runs at 8.0 sequences per second (seq/s);
MeteorNet-seg with chained-flow grouping runs at 4.1
seq/s. For 4 frames and batch size of 1, MeteorNet-seg
with direct grouping runs at 4.3 seq/s; MeteorNet-seg with
chained-flow grouping runs at 2.8 seq/s.

F. Proof of Theorem

Suppose ∀t,Xt = {St | St ⊆ [0, 1]m, |St| = n, n ∈
Z+} is the set of m-dimensional point clouds inside an m-
dimensional unit cube at time t ∈ Z. We define single-
frame Hausdorff distance dH(Si, Sj) for Si ∈ Xi and
Sj ∈ Xj . X = X1×X2× . . .×XT is the set of point cloud
sequences of length T . Suppose f : X → R is a continuous
function on X w.r.t dseq(·, ·), i.e. ∀ε > 0, ∃δ > 0, for any
S, S′ ∈ X , if dseq(S, S′) < δ, |f(S)−f(S′)| < ε. Here, we
define the distance of point cloud sequences dseq(·, ·) as the
maximum per-frame Hausdorff distance among all respec-
tive frame pairs, i.e. dseq(S, S′) = maxt{dH(St, S

′
t)}. Our

theorem says that f can be approximated arbitrarily closely
by a large-enough neural network and a max pooling layer
with enough neurons.

We first have the following lemma from the supplemen-
tary material of [3], which ensures the universal approxima-
tion potential of PointNet.

Lemma 1. Suppose f : X → R is a continuous set func-
tion w.r.t Hausdorff distance dH(·, ·). ∀ε > 0, ∃ continuous
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Figure 4: The architecture of MeteorNet-seg. The widths of “mlp {1,2,3,4}” for different configurations are listed in Table 2.
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Figure 5: Run time and frame rate of Meteor-seg with direct
grouping on Synthia test set.
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Figure 6: Run time and frame rate of Meteor-seg with chained-
flow grouping on Synthia test set.

function η and γ such that for any S ∈ X ,∣∣∣∣f(S)− γ ◦ (MAX
x∈S

{η(x)}
)∣∣∣∣ < ε

where MAX is a vector max operator that takes a set of
vectors as input and returns a new vector of the element-
wise maximum.

Our theorem is proved based on Lemma 1. The core
idea is that we can map the point cloud sequence indexed
by t into the single point cloud space.

Theorem 1. Suppose f : X1 × X2 × . . . × XT → R is a
continuous function w.r.t dseq(·, ·). ∀ε > 0, ∃ a continuous
function ζ(·, ·) and a continuous function γ, such that for

any S = (S1, S2, . . . , ST ) ∈ X1 ×X2 × . . .×XT ,∣∣∣∣∣f(S)− γ ◦ ( MAX
x
(t)
i ∈St,t∈{1,2,...,T}

{ζ(x(t)
i , t)}

)∣∣∣∣∣ < ε

where MAX is a vector max operator that takes a set of
vectors as input and returns a new vector of the element-
wise maximum.

Proof. It suffices to prove for m = 1.
In the following proof, we use plain xi instead of bold

xi to represent scalar value instead of a 3-D vector.
Let T = {S | S ⊆ [0, 1], |S| = n}. Define function

ψ : X → T as

ψ(S1, . . . , ST ) = {pT (xit , t) | xit ∈ St, t ∈ {1, . . . , T}}

where pT (x, t) = x+t−1
T is a function that maps each of the

T [0, 1] intervals into a unique place inside [0, 1] interval.
Notice that T = Xt, so dH can also be defined on T .

For any S ∈ X , ∀ε′ > 0, ∃δ = ε′T , such that
∀S′, dseq(S, S′) < δ, we have

dH(ψ(S), ψ(S′))

= dH(ψ(S1, . . . , ST ), ψ(S
′
1, . . . , S

′
T ))

= max
t
{ sup
x∈St

inf
y∈S′

t

d(pT (x, t), pT (y, t)),

sup
y∈S′

t

inf
x∈St

d(pT (y, t), pT (x, t))}

= max
t
{ sup
x∈St

inf
y∈S′

t

1

T
d(x, y), sup

y∈S′
t

inf
x∈St

1

T
d(y, x)}

=
1

T
max
t
{ sup
x∈St

inf
y∈S′

t

d(x, y), sup
y∈S′

t

inf
x∈St

d(y, x)}

=
1

T
max
t
dH(St, S

′
t) =

1

T
dseq(S, S

′) <
1

T
δ = ε′
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Figure 7: The architecture of MeteorNet-flow.

So ψ is a continuous function w.r.t. dH : X → R and
dseq : X ′ → R. It’s easy to show that the inverse of ψ is
also a continuous function.

According to Lemma 1, ∀ε > 0, ∃ continuous function η
and γ such that for any ψ(S) ∈ T ,∣∣∣∣f(S)− γ ◦ (MAX

x∈ψ(S)
{η(x)}

)∣∣∣∣
=

∣∣∣∣f(S)− γ ◦ ( MAX
xit∈St,t∈{1,...,T}

{η(pT (xit , t))}
)∣∣∣∣

=

∣∣∣∣f(S)− γ ◦ ( MAX
xit∈St,t∈{1,...,T}

{ζ(xit , t)}
)∣∣∣∣ < ε

where ζ is defined as ζ(·, t) = η(pT (·, t)).
This concludes the proof.

G. More Visualization

G.1. Synthia

We provide additional qualitative results for segmenta-
tion results on the Synthia test set in Figure 9. Again,
MeteorNet-seg can accurately segment most objects.

G.2. KITTI scene flow

We provide additional qualitative results for scene flow
estimation results on KITTI scene flow dataset in Figure
8. Again, MeteorNet-flow can accurately estimate flow for
moving objects.

H. Name Metaphor

The universe is all of space and time. When we look
deep into the universe, stars are the visible points in the sky.
Meteor shower is a group of stars that move together as a

Figure 8: Additional visualization of MeteorNet example results
on the KITTI scene flow dataset. Point are colored to indicate
which frames they belong to: frames t − 3, frame t − 2, frame
t− 1, frame t. Translated points (frame t− 3 + estimated scene
flow) is in black. Green and black shapes are supposed to overlap
for perfect estimation.

“dynamic point cloud sequence”. It brings fortune and good
luck to anyone who sees it.

We hope our MeteorNet can also bring fortune and good
luck to our readers and benefit related research domains.
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