
Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning
– Supplemental Materials

Shichen Liu1,2, Tianye Li1,2, Weikai Chen1, and Hao Li1,2,3

1USC Institute for Creative Technologies
2University of Southern California

3Pinscreen
{lshichen, tli, wechen}@ict.usc.edu hao@hao-li.com

� =

3⇥10�2

� =

1⇥10�4

� =

1⇥10�3

� =

1⇥10�2

� = 1 ⇥ 10�5 � = 3 ⇥ 10�5 � = 5 ⇥ 10�5 � = 1 ⇥ 10�4 � = 3 ⇥ 10�4 � = 5 ⇥ 10�4 � = 1 ⇥ 10�3 � = 3 ⇥ 10�3 � = 5 ⇥ 10�3 � = 1 ⇥ 10�2

More blurry

M
or

e 
tra

ns
pa

re
nt

Figure 1: Different rendering effects achieved by our proposed SoftRas renderer. We show how a colorized cube can be
rendered in various ways by tuning the parameters of SoftRas. In particular, by increasing γ, SoftRas can render the object
with more tranparency while more blurry renderings can be achieved via increasing σ. As γ → 0 and σ → 0, one can achieve
rendering effect closer to standard rendering.

1. Gradient Computation
In this section, we provide more analysis on the variants

of the probability representation (main paper Section 3.2)
and aggregate function (main paper Section 3.3), in terms
of the mathematical formulation and the resulting impact
on the backward gradient.

1.1. Overview

According to the computation graph in Figure 3 of the
main paper, our gradient from rendered image I to vertices
in mesh M is obtained by

∂I

∂M
=

∂I

∂U

∂U

∂M
+
∂I

∂Z

∂Z

∂M
+

∂I

∂N

∂N

∂M
. (1)

While ∂U
∂M , ∂Z∂M , ∂I∂N and ∂N

∂M can be easily obtained by
inverting the projection matrix and the illumination mod-
els, ∂I

∂U and ∂I
∂Z do not exist in conventional rendering

pipelines. Our framework introduces an intermediate rep-
resentation, probability map D, that factorizes the gradient
∂I
∂U to ∂I

∂D
∂D
∂U , enabling the differentiability of ∂I

∂U . Further,
we obtain ∂I

∂Z via the proposed aggregate function. In the
following context, we will first address the gradient ∂D∂U in
Section 1.2 and gradient ∂I

∂D and ∂I
∂Z in Section 1.3.

1.2. Probability Map Computation

The probability maps {Dij} based on the relative posi-
tion between a given triangle fj and pixel pi are obtained

1

mailto:lshichen@ict.usc.edu
mailto:tli@ict.usc.edu
mailto:wechen@ict.usc.edu
mailto:hao@hao-li.com


via sigmoid function with temperature σ and distance met-
ric D(i, j):

Dij =
1

1 + exp
(
−D(i,j)

σ

) , (2)

where the metric D essentially satisfies: (1) D(i, j) > 0 if
pi lies inside fj ; (2) D(i, j) < 0 if pi lies outside fj and (3)
D(i, j) = 0 if pi lies exactly on the boundary of fj . The
positive scalar σ controls the sharpness of the probability,
where Dj converges to a binary mask as σ → 0.

We introduce two candidate metrics, namely signed Eu-
clidean distance and barycentric metric. We represent pi
using barycentric coordinate bij ∈ R3 defined by fj :

bij = U−1j pi, (3)

where Uj =

x1 x2 x3
y1 y2 y3
1 1 1


fj

and pi =

xy
1


pi

.

1.2.1 Euclidean Distance

Let tij ∈ R3 be the barycentric coordinate of the point on
the edge of fj that is closest to pi. The signed Euclidean
distance DE(i, j) from pi to the edges of fj can be com-
puted as:

DE(i, j) = δij
∥∥Uj(t

i
j − bij)

∥∥2
2

= δij
∥∥Ujt

i
j − pi

∥∥2
2
, (4)

where δij is a sign indicator defined as δij = {+1, if pi ∈
fj ;−1, otherwise}.

Then the partial gradient ∂DE(i,j)
∂Uj

can be obtained via:

∂DE(i, j)

∂Uj
= 2δij

(
Ujt

i
j − pi

) (
tij
)T
. (5)

1.2.2 Barycentric Metric

We define the barycentric metric DB(i, j) as the minimum
of barycentric coordinate:

DB(i, j) = min{bij} (6)

let s = argmin
k

(bij)
(k), then the gradient from DB(i, j) to

Uj can be obtained through:

∂DB(i, j)

∂ (Uj)
(k,l)

=
∂min{bij}
∂ (Uj)

(k,l)

=
∂
(
bij
)(s)

∂U−1j

∂U−1j

∂ (Uj)
(k,l)

= −
∑
t

(pi)
(t) (

U−1j
)(s,k) (

U−1j
)(l,t)

, (7)

where k and l are the indices of Uj’s element.

1.3. Aggregate function

1.3.1 Softmax-based Aggregate Function

According to AS(·), the output color is:

Ii = AS({Cij}) =
∑
j

wijC
i
j + wibCb, (8)

where the weight {wj} is obtained based on the relative
depth {zj} and the screen-space position of triangle fj and
pixel pi as indicated in the following equation:

wij =
Dij exp

(
zij/γ

)∑
k Dik exp

(
zik/γ

)
+ exp (ε/γ)

; (9)

Cb and wib denote the color and weight of background re-
spectively where

wib =
exp (ε/γ)∑

k Dik exp
(
zik/γ

)
+ exp (ε/γ)

; (10)

zij is the clipped normalized depth. Note that we normalize
the depth so that the closer triangle receives a larger zij by

zij =
Zfar − Zij

Zfar − Znear
, (11)

where Zij denotes the actual clipped depth of fj at pi, while
Znear and Zfar denote the far and near cut-off distances of
the viewing frustum.

Specifically, the aggregate function AS(·) satisfies the
following three properties: (1) as γ → 0 and σ → 0, wi

converges to an one-hot vector where only the closest tri-
angle contains the projection of pi is one, which shows the
consistency between AS(·) and z-buffering; (2) wib is close
to one only when there is no triangle that covers pi; (3)
{wij} is robust to z-axis translation. In addition, γ is a posi-
tive scalar that could balance out the scale change on z-axis.

The gradient ∂I
∂Di

j
and ∂I

∂zij
can be obtained as follows:

2



Figure 2: More single-view reconstruction results. Left: input image; middle: reconstructed geometry; right: colorized
reconstruction.

∂Ii

∂Dij
=
∑
k

∂Ii

∂wik

∂wik
∂Dij

+
∂Ii

∂wib

∂wib
∂Dij

=
∑
k 6=j
−Cik

wijw
i
k

Dij
+ Cij(

wij
Dij
−
wijw

i
j

Dij
)− Cib

wijw
i
b

Dij

=
wij
Dij

(Cij − Ii) (12)

∂Ii

∂zij
=
∑
k

∂Ii

∂wik

∂wik
∂zij

+
∂Ii

∂wib

∂wib
∂zij

=
∑
k 6=j
−Cik

wijw
i
k

γ
+ Cij(

wij
γ
−
wijw

i
j

γ
)− Cib

wijw
i
b

γ

=
wij
γ
(Cij − Ii) (13)

1.3.2 Occupancy Aggregate Function

Independent from color and illumination, the silhouette of
the object can be simply described by an occupancy aggre-
gate function AO(·) as follows:

Iisil = AO({Dij}) = 1−
∏
j

(1−Dij). (14)

Hence, the partial gradient ∂I
i
sil

∂Di
j

can be computed as fol-
lows:

∂Iisil
∂Dij

=
1− Iisil
1−Dij

. (15)

3



2. Forward Rendering Results
As demonstrated in Figure 1, our framework is able to

directly render a given mesh, which cannot be achieved
by any existing rasterization-based differentiable render-
ers [1, 2]. In addition, compared to standard graphics ren-
derer, SoftRas can achieve different rendering effects in a
continuous manner thanks to its probabilistic formulation.
Specifically, by increasing σ, the key parameter that con-
trols the sharpness of the screen-space probability distri-
bution, we are able to generate more blurry rendering re-
sults. Furthermore, with increased γ, one can assign more
weights to the triangles on the far end, naturally achieving
more transparency in the rendered image. As discussed in
Section 5.2 of the main paper, the blurring and transparent
effects are the key for reshaping the energy landscape in or-
der to avoid local minima.

3. Network Structure

5×5 Conv, 64

5×5 Conv, 128

5×5 Conv, 256

SoftRas Feature

Rendered Image

5×5 Conv, 4

Sigmoid

Figure 3: Network Architecture of AN , an alternative color
aggregate function that is implemented as a neural net-
works.

We provide detailed structures for all neural networks
that were mentioned in the main paper. Figure 3 shows the
structure of AN (Section 3.3 and 5.1.4 of the main paper),
an alternative color aggregate function that is implemented
as a neural network. In particular, input SoftRas features
are first passed to four consecutive convolutional layers and
then fed into a sigmoid layer to model non-linearity. We
trainAN with the output of a standard rendering pipeline as
ground truth to achieve a parametric differentiable renderer.

We employ an encoder-decoder architecture for our
single-view mesh reconstruction. The encoder is used as
a feature extractor, whose network structure is shown in
Figure 4. The detailed network structure of the color and
shape generators are illustrated in Figure 5(a) and (b) re-
spectively. Both networks (Figure 6 of the main paper)
share the same feature extractor. The shape generators con-
sists of three fully connected layers and outputs a per-vertex
displacement vector that deforms a template mesh into a
target model. The color generator contains two fully con-

5×5 Conv, 64

5×5 Conv, 128

5×5 Conv, 256

Input Image

FC, 1024

FC, 1024

Feature, 512

FC, 512

Figure 4: Network architecture of the feature extractor.

Feature

FC, 1024

FC, 1024

FC, 642×3

Displacement
642×3

Feature

FC, 1024

Sampling
HW×Nd

Selection
Nc×Nd

FC, HW×Nd

FC, Nc×Nd

(a) Shape Generator (b) Color Generator

Figure 5: Network architectures of the shape and color gen-
erator.

nected streams: one for sampling the input image to build
the color palette and the other one for selecting colors from
the color palette to texture the sampling points.

4. More Results on Image-based 3D Reasoning
We show more results on single-view mesh reconstruc-

tion and image-base shape fitting.

4.1. Single-view Mesh Reconstruction
4.1.1 Intermediate Mesh Deformation

Target image Iter 0 Iter 50 Iter 100 Iter 150 Iter 200

Figure 6: Visualization of intermediate mesh deformation
during training. First row: the network deforms the input
sphereto a desired car model that corresponds to the target
image. Second row: the generated car model is further de-
formed to reconstruct the airplane.

4



Figure 7: Single-view reconstruction results on real images.

In Figure 6, we visualize the intermediate process of how
an input mesh is deformed to a target shape after the su-
pervision provided by SoftRas. As shown in the first row,
the mesh generator gradually deforms a sphere template to
a desired car shape which matches the input image. We
then change the target image to an airplane (Figure 6 sec-
ond row). The network further deforms the generated car
model to faithfully reconstruct the airplane. In both exam-
ples, the mesh deformation can quickly converge to a high-
fidelity reconstruction within 200 iterations, demonstrating
the effectiveness of our SoftRas renderer.

4.1.2 Single-view Reconstruction from Real Images

We further evaluate our approach on real images. As
demonstrated in Figure 7, though only trained on synthetic
data, our model generalizes well to real images and novel
views with faithful reconstructions and fine-scale details,
e.g. the tail fins of the fighter aircraft and thin structures
in the rifle and table legs.

4.1.3 More Reconstruction Results from ShapeNet

We provide more reconstruction results in Figure 2. For
each input image, we show its reconstructed geometry (mid-
dle) as well as the colored reconstruction (right).

4.2. Fitting Process for Rigid Pose Estimation

We demonstrate the intermediate process of how the pro-
posed SoftRas renderer managed to fit the color cube to the
target image in Figure 8. Since the cube is largely occluded,
directly leveraging a standard rendering is likely to lead to
local minima (Figure 10 of the main paper) that causes non-
trivial challenges for any gradient-based optimizer. By ren-
dering the cube with stronger blurring at the earlier stage,
our approach is able to avoid local minima, and gradually
reduce the rendering loss until an accurate pose can be fit-
ted.

4.3. Visualization of Non-rigid Body Fitting

In Figure 9, we compare the intermediate processes of
NMR [1] and SoftRas during the task of fitting the SMPL
model to the target pose. As the right hand of subject is
completely occluded in the initial image, NMR fails to com-
plete the task due to its incapability of flowing gradient to

Figure 8: Intermediate process of fitting a color cube (sec-
ond row) to a target pose shown in the input image (first
row). The smoothened rendering (third row) that is used to
escape local minimum, as well as the colorized fitting errors
(fourth row), are also demonstrated.

the occluded vertices. In contrast, our approach is able to
obtain the correct pose within 320 iterations thanks to the
occlusion-aware technique.

Figure 9: Comparisons of body shape fitting using NMR [1]
and our approach. Intermediate fitting processes of both
methods are visualized.

5



References
[1] H. Kato, Y. Ushiku, and T. Harada. Neural 3d mesh renderer.

In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3907–3916, 2018. 4, 5

[2] M. M. Loper and M. J. Black. Opendr: An approximate dif-
ferentiable renderer. In European Conference on Computer
Vision, pages 154–169. Springer, 2014. 4

6


