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In the Supplementary Material, we describe the gradients
of loss functions which jointly handle multiple negative im-
ages (Sec.1). Our implementation details are given in Sec.2
(Codes are also included). Additional experimental results
are given in Sec.3.

1. Handling Multiple Negatives

Give a query image q, a positive image p, and multi-
ple negative images {n}, n = 1, 2, ..., N . The Kullback-
Leibler divergence loss over multiple negatives is given by:

Lθ (q, p, n) = − log
(
c∗p|q

)
, (1)

For Gaussian kernel SARE, c∗p|q is defined as:

c∗p|q=
exp
(
−‖fθ(q)−fθ(p)‖2

)
exp
(
−‖fθ(q)−fθ(p)‖2

)
+
∑N
n=1exp

(
−‖fθ(q)−fθ(n)‖2

) .
(2)

where fθ(q), fθ(p), fθ(n) are the feature embeddings of
query, positive and negative images, respectively.

Substituting Eq. (2) into Eq. (1) gives:

Lθ (q,p,n)=

log

(
1 +

N∑
n=1

exp(‖fθ(q)− fθ(p)‖2 − ‖fθ(q)− fθ(n)‖2)

)
(3)

Denote 1+
∑N
n=1 exp(‖fθ(q)− fθ(p)‖2 − ‖fθ(q)− fθ(n)‖2)

as η, the gradients of Eq. (3) with respect to the query,
positive and negative images are given by:

∂L

∂fθ(p)
=

N∑
n=1

−2

η
exp

(
‖fθ(q)− fθ(p)‖2 − ‖fθ(q)− fθ(n)‖2

)
[fθ(q)− fθ(p)] , (4)

∂L

∂fθ(n)
=

2

η
exp

(
‖fθ(q)− fθ(p)‖2 − ‖fθ(q)− fθ(n)‖2

)
[fθ(q)− fθ(n)] , (5)

∂L

∂fθ(q)
= − ∂L

∂fθ(p)
−

N∑
n=1

∂L

∂fθ(n)
. (6)

Similarly, for Cauchy kernel, the loss function is given
by:

Lθ (q, p, n) = log

(
1 +

N∑
n=1

1 + ‖fθ(q)− fθ(p)‖2

1 + ‖fθ(q)− fθ(n)‖2

)
.

(7)

Denote 1 +
∑N
n=1

1+‖fθ(q)−fθ(p)‖2
1+‖fθ(q)−fθ(n)‖2 as η, the gradients

of Eq. (7) with respect to the query, positive and negative
images are given by:

∂L

∂fθ(p)
=

N∑
n=1

−2

η
(
1 + ‖fθ(q)− fθ(n)‖2

) [fθ(q)− fθ(p)] ,

(8)

∂L

∂fθ(n)
=

2
(
1 + ‖fθ(q)− fθ(p)‖2

)
η
(
1 + ‖fθ(q)− fθ(n)‖2

)2 [fθ(q)− fθ(n)] ,

(9)

∂L

∂fθ(q)
= − ∂L

∂fθ(p)
−
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∂L

∂fθ(n)
. (10)



For Exponential kernel, the loss function is given by:

Lθ (q, p, n) = log

(
1 +

N∑
n=1

exp (‖fθ(q)− fθ(p)‖ − ‖fθ(q)− fθ(n)‖)
)

.

(11)
Denote 1+

∑N
n=1 exp(‖fθ(q)− fθ(p)‖ − ‖fθ(q)− fθ(n)‖)

as η, the gradients of Eq. (11) with respect to the query,
positive and negative images are given by:

∂L

∂fθ(p)
=

N∑
n=1

−exp (‖fθ(q)− fθ(p)‖ − ‖fθ(q)− fθ(n)‖)
η ‖fθ(q)− fθ(p)‖

[fθ(q)− fθ(p)] , (12)

∂L

∂fθ(n)
=

exp (‖fθ(q)− fθ(p)‖ − ‖fθ(q)− fθ(n)‖)
η ‖fθ(q)− fθ(n)‖

[fθ(q)− fθ(n)] , (13)

∂L
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= − ∂L
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−
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∂L

∂fθ(n)
. (14)

The gradients are back propagated to train the CNN.

2. Implementation Details
We exactly follow the training method of [1], with-

out fine-tuning any hyper-parameters. The VGG-16 [7]
net is cropped at the last convolutional layer (conv5), be-
fore ReLU. The learning rate for the Pitts30K-train and
Pitts250K-train datasets are set to 0.001 and 0.0001, re-
spectively. They are halved every 5 epochs, momentum 0.9,
weight decay 0.001, batch size of 4 tuples. Each tuple con-
sist of one query image, one positive image, and ten nega-
tive images. The CNN is trained for at most 30 epochs but
convergence usually occurs much faster (typically less than
5 epochs). The network which yields the best recall@5 on
the validation set is used for testing.

Triplet ranking loss For the triplet ranking loss [1], we
set margin m = 0.1, and triplet images producing a non-
zero loss are used in gradient computation, which is the
same as [1].

Contrastive loss For the contrastive loss [6], we set mar-
gin τ = 0.7, and negative images producing a non-zero loss
are used in gradient computation. Note that positive images
are always used in training since they are not pruned out.

Geographic classification loss For the geographic classi-
fication method [9], we use the Pitts250k-train dataset for
training. We first partition the 2D geographic space into
square cells, with each cell size at 25m. The cell size is se-
lected the same as the evaluation metric for compatibleness,
so that the correctly classified images are also the correctly

localized images according to our evaluation metric. We re-
move the Geo-classes which do not contain images, result-
ing in 1637 Geo-classes. We append a fully connected layer
(random initialization, with weights at 0.01 × randn) and
Softmax-log-loss layer after the NetVLAD pooling layer to
predict which class the image belongs to.

SARE loss For our methods (Our-Ind., and Our-Joint ),
Our-Ind. treats multiple negative images independently
while Our-Joint treats multiple negative images jointly. The
two methods only differ in the loss function and gradients
computation. For each method, the corresponding gradients
are back-propagated to train the CNN.

Triplet angular loss For the triplet angular loss [10], we
use the N-pair loss function (Eq. (8) in their paper) with
α = 45◦ as it achieves the best performance on the Stanford
car dataset.

N-pair loss For the N-pair loss [8], we use the N-pair loss
function (Eq. (3) in their paper).

Lifted structured loss For the lifted structured loss [5],
we use the smooth loss function (Eq. (4) in their paper).
Note that training images producing a zero loss (J̃i,j < 0)
are pruned out.

Ratio loss For the Ratio loss [2], we use the MSE loss
function since it achieves the best performance in there pa-
per.

3. Additional Results

Dataset. Table 2 gives the details of datasets used in our
experiments.

Visualization of feature embeddings. Fig. 1 and Fig. 2
visualize the feature embeddings of the 24/7 Tokyo-query
and Sf-0-query dataset computed by our method (Our-Ind.)
in 2-D using the t-SNE [4], respectively. Images are dis-
played exactly at their embedded locations. Note that im-
ages taken from the same place are mostly embedded to
nearby 2D positions although they differ in lighting and per-
spective.

Image retrieval for varying dimensions. Table 3 gives
the comparison of image retrieval performance for different
output dimensions.



Table 1: Comparison of Recalls on the Pitts250k-test, TokyoTM-val, 24/7 Tokyo and Sf-0 datasets.

XXXXXXXXXXMethod
Dataset Pitts250k-test TokyoTM-val 24/7 Tokyo Sf-0

r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10
Our-Ind. 88.97 95.50 96.79 94.49 96.73 97.30 79.68 86.67 90.48 80.60 86.70 89.01
Our-Joint 88.43 95.06 96.58 94.71 96.87 97.51 80.63 87.30 90.79 77.75 85.07 87.52
Contrastive [6] 86.33 94.09 95.88 93.39 96.09 96.98 75.87 86.35 88.89 74.63 82.23 84.53
N-pair [8] 87.56 94.57 96.21 94.42 96.73 97.41 80.00 89.52 91.11 76.66 83.85 87.11
Angular [10] 88.60 94.86 96.44 94.84 96.83 97.45 80.95 87.62 90.16 79.51 86.57 88.06
Liftstruct [5] 87.40 94.52 96.28 94.48 96.90 97.47 77.14 86.03 89.21 78.15 84.67 87.11
Geo-Classification [9] 83.19 92.67 94.59 93.54 96.80 97.50 71.43 82.22 85.71 67.84 78.15 81.41
Ratio [2] 87.28 94.25 96.07 94.24 96.84 97.41 80.32 87.30 88.89 76.80 85.62 87.38

Table 2: Datasets used in experiments. The Pitts250k-train
dataset is only used to train the Geographic classification
CNN [9]. For all the other CNNs, Pitts30k-train dataset is
used to enable fast training.

Dataset #database images #query images
Pitts250k-train 91,464 7,824
Pitts250k-val 78,648 7,608
Pitts250k-test 83,952 8,280
Pitts30k-train 10,000 7,416
Pitts30k-val 10,000 7,608
Pitts30k-test 10,000 6,816
TokyoTM-val 49,056 7,186
Tokyo 24/7 (-test) 75,984 315
Sf-0 610,773 803
Oxford 5k 5063 55
Paris 6k 6412 220
Holidays 991 500

Metric learning methods Table 1 gives the complete Re-
call@N performance for different methods. Our method
outperforms the contrastive loss [6] and Geo-classification
loss [9], while remains comparable with other state-of-the-
art metric learning methods.
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Figure 2: Visualization of feature embeddings computed by our method ( Our-Ind. ) using t-SNE [4] on the Sf-0-query
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