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In the Supplementary Material, we describe the gradients
of loss functions which jointly handle multiple negative im-

ages (Sec.1). Our implementation details are given in Sec.2 oL N oo )
(Codes are also included). Additional experimental results 9fs(p) = Z *H exp (”f o(a) = fo)II” = [Ifo(q) — fo(n)|l )
are given in Sec.3. n=1
[fo(a) — fo(p)], 4)
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1. Handling Multiple Negatives 8fs(n) = EGXP (Hf@(Q) — fo@)II” = 1lfo(q) = fo(n)|l )
Give a query image ¢, a positive image p, and multi- [fo(a) = fo(n)], ©)
ple negative images {n},n = 1,2,..., N. The Kullback- oL N
Leibler divergence loss over multiple negatives is given by: 9fe(q) ) fo(p) - (6)
Lo (g,p,n) = —log (C;|q) ) (1) Similarly, for Cauchy kernel, the loss function is given
by:

For Gaussian kernel SARE, c;‘ q is defined as:
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( ) ( ()2) Denote 1 + Zn 1 —ii\‘f]{jg)) ]{:((Z ;“2 as 7, the gradleflts
where fo(q), fo(p), fo(n) are the feature embeddings of of Eq. (7) with respect to the query, positive and negative
query, positive and negative images, respectively. images are given by:

Substituting Eq. (2) into Eq. (1) gives: N
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as 7, the gradients of Eq. (3) with respect to the query, - _ _ Z (10)
positive and negative images are given by: dfe(q) dfe(p) el 9 fo(n)



For Exponential kernel, the loss function is given by:

N
Lo (q,p,n) = log (1 + > exp(lfola) — fo®)ll — I folq) — fe(?ﬂll)) .

n=1

an

Denote 1+ 51, exp(|| fa(a) — fo(0)l| — Il fo(a) — fo(n)l])

as 7, the gradients of Eq. (11) with respect to the query,
positive and negative images are given by:
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The gradients are back propagated to train the CNN.

2. Implementation Details

We exactly follow the training method of [I], with-
out fine-tuning any hyper-parameters. The VGG-16 [7]
net is cropped at the last convolutional layer (conv5), be-
fore ReLU. The learning rate for the Pitts30K-train and
Pitts250K-train datasets are set to 0.001 and 0.0001, re-
spectively. They are halved every 5 epochs, momentum 0.9,
weight decay 0.001, batch size of 4 tuples. Each tuple con-
sist of one query image, one positive image, and ten nega-
tive images. The CNN is trained for at most 30 epochs but
convergence usually occurs much faster (typically less than
5 epochs). The network which yields the best recall@5 on
the validation set is used for testing.

Triplet ranking loss For the triplet ranking loss [1], we
set margin m = 0.1, and triplet images producing a non-
zero loss are used in gradient computation, which is the
same as [1].

Contrastive loss For the contrastive loss [6], we set mar-
gin 7 = 0.7, and negative images producing a non-zero loss
are used in gradient computation. Note that positive images
are always used in training since they are not pruned out.

Geographic classification loss For the geographic classi-
fication method [9], we use the Pitts250k-train dataset for
training. We first partition the 2D geographic space into
square cells, with each cell size at 25m. The cell size is se-
lected the same as the evaluation metric for compatibleness,
so that the correctly classified images are also the correctly

localized images according to our evaluation metric. We re-
move the Geo-classes which do not contain images, result-
ing in 1637 Geo-classes. We append a fully connected layer
(random initialization, with weights at 0.01 X randn) and
Softmax-log-loss layer after the NetVLAD pooling layer to
predict which class the image belongs to.

SARE loss For our methods (Our-Ind., and Our-Joint ),
Our-Ind. treats multiple negative images independently
while Our-Joint treats multiple negative images jointly. The
two methods only differ in the loss function and gradients
computation. For each method, the corresponding gradients
are back-propagated to train the CNN.

Triplet angular loss For the triplet angular loss [10], we
use the N-pair loss function (Eq. (8) in their paper) with
a = 45° as it achieves the best performance on the Stanford
car dataset.

N-pair loss For the N-pair loss [8], we use the N-pair loss
function (Eq. (3) in their paper).

Lifted structured loss For the lifted structured loss [5],
we use the smooth loss function (Eq. (4) in their paper).
Note that training images producing a zero loss (jL ;< 0)
are pruned out.

Ratio loss For the Ratio loss [2], we use the MSE loss
function since it achieves the best performance in there pa-
per.

3. Additional Results

Dataset. Table 2 gives the details of datasets used in our
experiments.

Visualization of feature embeddings. Fig. | and Fig. 2
visualize the feature embeddings of the 24/7 Tokyo-query
and Sf-0-query dataset computed by our method (Our-Ind.)
in 2-D using the t-SNE [4], respectively. Images are dis-
played exactly at their embedded locations. Note that im-
ages taken from the same place are mostly embedded to
nearby 2D positions although they differ in lighting and per-
spective.

Image retrieval for varying dimensions. Table 3 gives
the comparison of image retrieval performance for different
output dimensions.



Table 1: Comparison of Recalls on the Pitts250k-test, TokyoTM-val, 24/7 Tokyo and Sf-0 datasets.

Dataset Pitts250k-test TokyoTM-val 24/7 Tokyo St-0
Method r@el | r@5 | r@l10 | r@l | r@5 | r@l10 | r@l | r@5 | r@10 | r@l1 | r@5 | r@10
Our-Ind. 88.97 | 95.50 | 96.79 | 94.49 | 96.73 | 97.30 | 79.68 | 86.67 | 90.48 | 80.60 | 86.70 | 89.01
Our-Joint 88.43 | 95.06 | 96.58 | 94.71 | 96.87 | 97.51 | 80.63 | 87.30 | 90.79 | 77.75 | 85.07 | 87.52
Contrastive [0] 86.33 | 94.09 | 95.88 | 93.39 | 96.09 | 96.98 | 75.87 | 86.35 | 88.89 | 74.63 | 82.23 | 84.53
N-pair [8] 87.56 | 94.57 | 96.21 | 94.42 | 96.73 | 97.41 | 80.00 | 89.52 | 91.11 | 76.66 | 83.85 | 87.11
Angular [10] 88.60 | 94.86 | 96.44 | 94.84 | 96.83 | 97.45 | 80.95 | 87.62 | 90.16 | 79.51 | 86.57 | 88.06
Liftstruct [5] 87.40 | 94.52 | 96.28 | 94.48 | 96.90 | 97.47 | 77.14 | 86.03 | 89.21 | 78.15 | 84.67 | 87.11
Geo-Classification [9] | 83.19 | 92.67 | 94.59 | 93.54 | 96.80 | 97.50 | 71.43 | 82.22 | 85.71 | 67.84 | 78.15 | 81.41
Ratio [2] 87.28 | 94.25 | 96.07 | 94.24 | 96.84 | 97.41 | 80.32 | 87.30 | 88.89 | 76.80 | 85.62 | 87.38
Table 2: Datasets used in experiments. The Pitts250k-train Table 3: Retrieval performance of CNNs trained on

dataset is only used to train the Geographic classification
CNN [9]. For all the other CNNs, Pitts30k-train dataset is
used to enable fast training.

Pitts250k-test dataset on image retrieval benchmarks. No
spatial re-ranking, or query expansion are performed. The
accuracy is measured by the mean Average Precision

(mAP).

Dataset #database images | #query images
Pitts250k-train 91,464 7,824 . Oxford 5K Paris 6k .
Pitts250k-val 78,648 7,608 Method Dim. T T crop | fall | crop | | olidays
Pitts250k-test 83,952 8,280 Our-Ind. 4096 | 71.66 | 75.51 | 82.03 | 81.07 | 80.71
Pitts30k-train 10,000 7,416 Our-Joint 4096 | 70.26 | 73.33 | 81.32 | 81.39 | 84.33
Pitts30k-val 10,000 7,608 NetVLAD [1] | 4096 | 69.09 | 71.62 | 78.53 | 79.67 | 83.00
Pitts30k-test 10,000 6,816 CRN [3] 4096 | 69.20 - - - -
TokyoTM-val 49,056 7,186 Our-Ind. 2048 | 71.11 | 73.93 | 80.90 | 79.91 | 79.09
Tokyo 24/7 (-test) 75,984 315 Our-Joint 2048 | 69.82 | 72.37 | 80.48 | 80.49 | 83.17
Sf-0 610,773 803 NetVLAD [1] | 2048 | 67.70 | 70.84 | 77.01 | 78.29 | 82.80
Oxford 5k 5063 55 CRN [3] 20438 | 63.30 - - - -
Paris 6k 6412 220 Our-Ind. 1024 {70.31 | 72.20 | 79.29 | 78.54 | 78.76
Holidays 991 500 Our-Joint 1024 | 68.46 | 70.72 | 78.49 | 78.47 | 83.15
NetVLAD [1]| 1024 | 66.89 | 69.15 | 75.73 | 76.50 | 82.06
CRN [3] 1024 | 66.70 - - - -
Metric learning methods Table 1 gives the complete Re- Our-Ind. 312 168.96 | 70.59 | 77.36 | 76.44 | 77.65
call@N performance for different methods. Our method Our-Joint 512 167.17169.19 | 76.80 | 77.20 | 81.83
outperforms the contrastive loss [6] and Geo-classification NetVLAD [1]| 512 | 65.56 | 67.56 | 73.44 | 7491 | 81.43
loss [9], while remains comparable with other state-of-the- CRN [3] 512 1 64.50 N N N N
art mefric learning methods. Our-Ind. 256 | 65.85 | 67.46 | 75.61 | 74.82 | 76.27
Our-Joint 256 | 65.30|67.51|74.50|75.32| 80.57
References NetVLAD [1]| 256 | 62.49 | 63.53 | 72.04 | 73.47 | 80.30
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Figure 1: Visualization of feature embeddings computed by our method ( Our-Ind. ) using t-SNE [4] on the 24/7 Tokyo-
query dataset. (Best viewed in color on screen)
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Figure 2: Visualization of feature embeddings computed by our method ( Our-Ind. ) using t-SNE [4] on the Sf-O-query
dataset. (Best viewed in color on screen)



