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1. Implementation Details


We introduce our implementation details in this section.
In the FE layer, a simplified PointNet++ is applied, in which


only three set abstraction layers with a single scale grouping
layer are used to sub-sample points into groups with sizes 4096,
1024, 256, and the MLPs of three hierarchical PointNet layer
are 32× 32, 32× 64, 64× 64 in the sub-sampling stage, and
64× 64, 32× 32, 32× 32× 32 in the up-sampling stage. This
is followed by a fully connected layer with 32 kernels and
a dropout layer with the keeping probability as 0.7 to avoid
overfitting. The MLP in the point weighting layer is 16× 8× 1,
and only the top N = 64 points are selected in the source point
cloud according to their learned weights in the descending order.
The searching range d and the number of neighboring points
K to be collected in the DFE step are set to be 1m and 32,
respectively. In the mini-PointNet structure of the DFE layer,
the MLP is 32× 32× 32. The 3D CNNs settings in the CPG
step are Conv3d (16, 3, 1) - Conv3d(4, 3, 1) - Conv3d (1, 3, 1).
The grid voxels are set as ( 2×2.0


0.4 + 1, 2×2.0
0.4 + 1, 2×2.0


0.25 + 1).
The proposed network is trained with the batch size as 1,


the learning rate as 0.01 and the decay rate as 0.7 with the
decay step to be 10000. During the training stage, we conduct
the data augmentation and supervised training by adding a
uniformly distributed random noise of [0.0 ∼ 1.0]m in the x, y
and z dimensions, and [0 ∼ 1.0]◦ in the roll, yaw, and pitch
dimensions to the given ground truth. We randomly divide the
dataset into the training and validation set, yielding the ratio of
training to validation as 4 to 1. We stop at 200 epochs when
there is no performance gain.


We list the configuration settings of all the baseline methods
in Table 1. We use these parameters in the experiments across
all the KITTI, Apollo-SouthBay and 3DMatch datasets.


2. More Implementation Details of the AA-ICP


The Euler angles are used as the rotation representation
when solving the optimal weighting terms α based on the his-
tory of the latest iterations and residuals in the original imple-
mentation of the AA-ICP [2]. It is known that the Euler angles
have the singularity problem. In rare cases when we test using
the Apollo-SouthBay dataset, we noted that it caused the esti-
mated Euler angles to flip across the axes in our experimental
results using the original implementation. Certainly, this results
in the algorithm failing to converge. Therefore, we modified the
implementation by limiting the valid value range of the Euler
angles (α, β, γ) to be [-90, 90]◦, [-180, 180]◦ and [-180, 180]◦
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and the interpolation between the two orientations will always
use the shortest path. The comparison of the results using the
original and modified version is shown in Table 2.


3. More Results on Other Datasets


We evaluate the performance of the proposed DeepVCP
using datasets from the sensors other than the Velodyne HDL64
LiDAR, including the 3DMatch [3] and the TLS [1] dataset.


3.1. The 3DMatch Dataset


The point clouds in the 3DMatch dataset are collected by
RGB-D sensors (e.g. Microsoft Kinect, Intel RealSense). Most
methods do not converge when we use the original point cloud
pairs in the 3DMatch dataset, due to the very small overlap
between each pair. Therefore, we synthesize the new data pair
by downsampling one of the point clouds to approximately
150, 000 points, duplicating and shifting it with large random
initial transformations, and finally adding random errors of less
than 0.01m to each point in the new point cloud. With the help
of the sequential storage in 3DMatch, we take the first 90% and
the last 90% points in each point cloud to let the two generated
point clouds have an approximate 90% overlap. To conduct
a comprehensive evaluation, we gradually increase the initial
pose errors during our experiments. The complete results are
summarized in in Tab. 3 and Tab. 4. We consider the results
with the maximum errors larger than 5.0m and 80.0◦ as non-
convergence, marked as “N/A” in the table. The mean value
calculation is computed by ignoring the non-convergence cases
to show the average performance when they work normally.


The searching range d and the grid voxel size are set as
0.8m and ( 2×4.0


0.5 + 1, 2×4.0
0.5 + 1, 2×4.0


0.5 + 1), respectively. But
to keep CPD not intractable, we once again downsample the
point clouds using a voxel size of 0.015m leaving about 50, 000
points. All other settings are consistent with the experiments
in the main conference proceeding. As can be seen, the perfor-
mance of the ICP family and the NDT gradually deteriorates as
the initial pose errors increase while the CPD and 3DFeat-Net
methods are still stable. The CPD and 3DFeat-Net methods
match globally so they are expected to be insensitive to the ini-
tial errors. By using deep features that are powerful enough to
find correct matching keypoints, our DeepVCP achieves good
accuracy under large initial errors.


3.2. The TLS dataset


The TLS dataset [1] is from Terrestrial Laser Scanners
(TLS), e.g. a Rigel LiDAR. We downsample the original
point clouds with a voxel grid of 0.0625m and leave about







variable value


Registration (Base Class in PCL)


nr iterations 0
max iterations 600


ransac iterations 0
transformation epsilon 1e-6


transformation rotation epsilon 0.0
inlier threshold 0.05


min number correspondences 3 (4 for G-ICP)
euclidean fitness epsilon 1e-4


corr dist threshold 1.0 (0.5 for ICP-Po2Pl)


IterativeClosestPoint (ICP)


x idx offset 0
y idx offset 0
z idx offset 0


nx idx offset 0
ny idx offset 0
nz idx offset 0


GeneralizedIterativeClosestPoint (G-ICP)


k correspondences 20
gicp epsilon 0.001


rotation epsilon 2e-3
mahalanobis 0


max inner iterations 20


NormalDistributionsTransform (NDT)
resolution 1.0 (0.1 for 3DMatch dataset)
step size 0.1 (0.9 for 3DMatch dataset)


outlier ratio 0.55


AndersonIterativeClosestPoint (AA-ICP)


alpha limit min -10
alpha limit max 10


beta 1.0
small step threshold 3


error overflow threshold 0.05


Transform (CPD)


m correspondence false
m max iterations 200


m normalize true
m outliers 0.2
m sigma2 0.0


m tolerance 1e-5


Rigid (CPD) m reflections false
m scale false


Table 1. The configuration settings of the baseline methods in the experiments. The ICP family and the NDT all inherit from a common base class
in which the parameters are shared across all these methods.


Dataset Method Angular Error(◦) Translation Error(m)
Mean Max Mean Max


KITTI Original 0.152 1.406 0.096 1.813
Modified 0.145 1.406 0.088 2.020


Apollo-SouthBay Original 0.363 179.9 0.119 5.675
Modified 0.054 1.087 0.109 5.243


Table 2. Comparison of the original and modified version of the
AA-ICP implementation. The issue of irregularly large maximum
angle errors in rare cases of Apollo-SouthBay dataset is resolved.


130,000 points as our input. We once again adjust the search-
ing range d and the grid voxels’ size accordingly, to 0.5m and


( 2×2.0
0.4 + 1, 2×2.0


0.4 + 1, 2×2.0
0.4 + 1). Three different scenes in


the dataset are evaluated. Please note, that we certainly can not
train the network adequately with this little amount of data. It
is highly possible that the results are overfitted, and therefore
are only visually evaluated. The registration results of a court-
yard, an office and a forest are shown in Figure 1, Figure 2 and
Figure 3, respectively.







Before Registration After Registration


Figure 1. The registration result of a courtyard from the TLS dataset.
The point cloud pair is differently colored. From the zoomed figures,
we observe that the mountain terrain in the center and the walls of the
building at the bottom are aligned well after the registration.


Before Registration After Registration


Figure 2. The registration result of an office from the TLS dataset. As
shown in the zoomed figures, the desks, chairs, and walls are aligned
well after the registration.


Before Registration After Registration


Figure 3. The registration result of a forest from the TLS dataset.
From the zoomed figures, the trunks and the tripod are aligned well
after the registration.
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Initial Error ICP-Po2Po ICP-Po2Pl G-ICP AA-ICP NDT-P2D CPD 3DFeat-Net Ours
(m) (m) (m) (m) (m) (m) (m) (m)


(0.1m, 1.0◦) Mean 0.023 0.012 0.012 0.018 0.005 0.004 0.072 0.019
Max 0.092 0.053 0.065 0.097 0.017 0.024 0.257 0.073


(0.2m, 2.0◦) Mean 0.024 0.012 0.015 0.018 0.009 0.004 0.072 0.021
Max 0.091 0.054 0.120 0.097 0.206 0.024 0.257 0.065


(0.3m, 3.0◦) Mean 0.025 0.012 0.013 0.019 0.052 0.004 0.072 0.018
Max 0.092 0.056 0.044 0.097 0.800 0.024 0.257 0.071


(0.4m, 4.0◦) Mean 0.026 0.012 0.014 0.019 0.170 0.004 0.072 0.019
Max 0.093 0.055 0.055 0.097 1.219 0.024 0.257 0.052


(0.5m, 5.0◦) Mean 0.026 0.012 0.014 0.021 0.282 0.004 0.072 0.019
Max 0.093 0.055 0.051 0.258 1.535 0.024 0.257 0.060


(0.6m, 6.0◦) Mean 0.026 0.012 0.015 0.019 0.478 0.004 0.072 0.018
Max 0.093 0.056 0.062 0.119 4.804 0.024 0.257 0.053


(0.7m, 7.0◦) Mean 0.026 0.012 0.015 0.019 0.514 0.004 0.072 0.018
Max 0.094 0.055 0.064 0.098 N/A 0.024 0.257 0.064


(0.8m, 8.0◦) Mean 0.026 0.012 0.017 0.018 0.709 0.004 0.072 0.017
Max 0.094 0.055 0.153 0.098 4.889 0.024 0.257 0.057


(0.9m, 9.0◦) Mean 0.026 0.012 0.020 0.024 0.817 0.004 0.072 0.017
Max 0.093 0.055 0.522 0.640 4.818 0.024 0.257 0.052


(1.0m, 10.0◦) Mean 0.026 0.035 0.026 0.024 1.007 0.004 0.072 0.016
Max 0.094 2.340 0.599 0.585 4.850 0.024 0.257 0.050


(1.1m, 11.0◦) Mean 0.027 0.075 0.022 0.120 0.949 0.004 0.072 0.019
Max 0.093 2.502 0.390 5.147 4.120 0.024 0.257 0.077


(1.2m, 12.0◦) Mean 0.089 0.059 0.057 0.152 1.243 0.004 0.072 0.018
Max 4.334 2.508 2.312 4.932 4.915 0.024 0.257 0.062


(1.3m, 13.0◦) Mean 0.114 0.162 0.029 0.118 1.349 0.004 0.072 0.018
Max 4.336 4.804 0.805 4.715 4.898 0.024 0.257 0.066


(1.4m, 14.0◦) Mean 0.155 0.192 0.116 0.226 1.332 0.004 0.072 0.018
Max 4.336 4.822 3.436 4.715 4.890 0.024 0.257 0.077


(1.5m, 15.0◦) Mean 0.161 0.163 0.232 0.310 1.379 0.004 0.072 0.018
Max 4.713 4.206 4.669 4.716 N/A 0.024 0.257 0.052


(1.6m, 16.0◦) Mean 0.197 0.094 0.250 0.342 1.590 0.004 0.072 0.019
Max 4.712 3.052 4.505 4.715 4.884 0.024 0.257 0.055


(1.7m, 17.0◦) Mean 0.229 0.286 0.238 0.323 1.678 0.004 0.072 0.017
Max N/A N/A 4.694 N/A 4.952 0.024 0.257 0.063


(1.8m, 18.0◦) Mean 0.276 0.345 0.314 0.241 1.681 0.004 0.072 0.017
Max 6.365 N/A 4.704 4.714 4.881 0.024 0.257 0.059


(1.9m, 19.0◦) Mean 0.244 0.380 0.316 0.376 1.768 0.004 0.072 0.017
Max N/A N/A 4.547 N/A N/A 0.024 0.257 0.048


(2.0m, 20.0◦) Mean 0.387 0.343 0.360 0.325 1.826 0.004 0.072 0.017
Max N/A N/A 4.505 N/A 4.885 0.024 0.257 0.046


Table 3. The performance evaluation given different initial errors by illustrating the translational errors. The performance of the ICP family and
the NDT gradually deteriorates as the initial pose errors increase. the CPD and 3DFeat-Net methods are not influenced by the initial errors as they
are global methods. Our DeepVCP achieves high accuracy consistently demonstrating the matching robustness using deep features.







Initial Error ICP-Po2Po ICP-Po2Pl G-ICP AA-ICP NDT-P2D CPD 3DFeat-Net Ours
(deg) (deg) (deg) (deg) (deg) (deg) (deg) (deg)


(0.1m, 1.0◦) Mean 0.594 0.285 0.254 0.401 0.104 0.070 1.654 0.465
Max 2.470 1.264 1.247 2.451 0.346 0.427 6.129 1.538


(0.2m, 2.0◦) Mean 0.636 0.291 0.291 0.405 0.213 0.070 1.654 0.513
Max 2.623 1.348 1.558 2.464 7.420 0.427 6.129 1.359


(0.3m, 3.0◦) Mean 0.660 0.293 0.270 0.404 0.856 0.070 1.654 0.446
Max 2.658 1.439 1.097 2.457 15.47 0.427 6.129 1.419


(0.4m, 4.0◦) Mean 0.677 0.294 0.289 0.419 3.238 0.070 1.654 0.448
Max 2.628 1.453 1.068 2.465 33.00 0.427 6.129 1.198


(0.5m, 5.0◦) Mean 0.690 0.298 0.288 0.480 5.819 0.070 1.654 0.465
Max 2.627 1.458 1.071 7.047 50.14 0.427 6.129 1.470


(0.6m, 6.0◦) Mean 0.701 0.302 0.305 0.440 7.577 0.070 1.654 0.452
Max 2.613 1.457 1.023 4.547 N/A 0.427 6.129 1.158


(0.7m, 7.0◦) Mean 0.702 0.310 0.305 0.401 9.042 0.070 1.654 0.456
Max 2.603 1.457 1.060 2.448 N/A 0.427 6.129 1.416


(0.8m, 8.0◦) Mean 0.708 0.313 0.354 0.380 9.538 0.070 1.654 0.437
Max 2.633 1.453 2.806 2.543 N/A 0.427 6.129 1.220


(0.9m, 9.0◦) Mean 0.706 0.309 0.320 0.698 12.12 0.070 1.654 0.446
Max 2.659 1.452 1.777 30.93 N/A 0.427 6.129 1.427


(1.0m, 10.0◦) Mean 0.700 0.729 0.595 0.732 15.76 0.070 1.654 0.406
Max 2.679 42.69 24.84 33.27 N/A 0.427 6.129 1.386


(1.1m, 11.0◦) Mean 0.706 1.791 0.623 0.692 14.49 0.070 1.654 0.440
Max 2.697 63.15 26.29 N/A N/A 0.427 6.129 1.423


(1.2m, 12.0◦) Mean 1.077 1.680 1.077 1.166 17.92 0.070 1.654 0.458
Max N/A 63.15 N/A N/A N/A 0.427 6.129 1.785


(1.3m, 13.0◦) Mean 1.517 2.147 0.648 1.161 17.68 0.070 1.654 0.391
Max N/A N/A N/A N/A N/A 0.427 6.129 1.275


(1.4m, 14.0◦) Mean 1.516 1.935 1.872 1.292 17.48 0.070 1.654 0.445
Max N/A N/A N/A N/A N/A 0.427 6.129 1.416


(1.5m, 15.0◦) Mean 1.513 1.875 1.513 0.717 18.43 0.070 1.654 0.440
Max N/A N/A N/A N/A N/A 0.427 6.129 1.176


(1.6m, 16.0◦) Mean 1.078 1.763 2.306 1.760 17.27 0.070 1.654 0.481
Max N/A N/A N/A N/A N/A 0.427 6.129 1.330


(1.7m, 17.0◦) Mean 1.874 1.770 2.722 1.787 16.85 0.070 1.654 0.446
Max N/A N/A N/A N/A N/A 0.427 6.129 1.338


(1.8m, 18.0◦) Mean 2.263 1.836 3.922 0.894 20.44 0.070 1.654 0.419
Max N/A N/A N/A N/A N/A 0.427 6.129 1.340


(1.9m, 19.0◦) Mean 2.275 2.226 2.628 3.124 21.49 0.070 1.654 0.423
Max N/A N/A N/A N/A N/A 0.427 6.129 1.142


(2.0m, 20.0◦) Mean 2.725 1.665 2.516 1.782 18.70 0.070 1.654 0.423
Max N/A N/A N/A N/A N/A 0.427 6.129 1.140


Table 4. The performance evaluation given different initial errors by illustrating angular errors. The performance of the ICP family and the NDT
gradually deteriorates as the initial pose errors increase. The CPD and 3DFeat-Net methods are not influenced by the initial errors as they are
global methods. Our DeepVCP achieves high accuracy consistently, demonstrating the matching robustness using deep features.
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