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1. Proof for Theorems
This section provides the proofs for the 4 theorems.

Theorem 1. Upper bounding: For any n+ < k and s,

`k(s,y) ≥ γ`Prec@k(s,y)− γ(k − n+) (1)

Proof. We rewrite the loss function by adding the scores in
set K\N to both of the two terms.

`k(s,y) =
∑
zi∈N

ŝi −
∑
zi∈P

ŝi

=
∑
zi∈K

ŝi −
∑

zi∈P
⋃
K\N

ŝi
(2)

Note thatK was defined as the top k ranked according to ŝi.
We also define set K′ as the top k ranked according to si,
i.e. K′ = {zi ∈ C : si ≥ s[k]}. So, the first term,∑

zi∈K
ŝi ≥

∑
zi∈K′

ŝi = γ`Prec@k(s,y) +
∑
zi∈K′

si (3)

We further consider the second term. In set P
⋃
K\N there

are k images including n+ positive images. So∑
zi∈P

⋃
K\N

ŝi = γ(k − n+) +
∑

zi∈P
⋃
K\N

si (4)

By definition
∑

zi∈K′ si is the maximum for the sum of si
over k images and |P

⋃
K\N| = k so,∑

zi∈K′

si ≥
∑

zi∈P
⋃
K\N

si (5)

Combining the three formulas above concludes this proof.

Theorem 2. Consistency: For any n+ < k, when there
is a large margin γ between positive images and negative
images that should be ranked out of K (the k − n+ + 1-th

∗Equal Contribution

ranked negative image), i.e. s+[n+]−s
−
[k−n++1] ≥ γ, we have

`k(s,y) = `Prec@k(s,y)− (k − n+) = 0. Here s+ ∈ Rn+

and s− ∈ Rn−n+ are two sub-vectors of s containing the
similarity scores of positive and negative images.

Proof. If K contains all n+ positive images, P = N = ∅,
obviously, `k(s,y) = 0.

We now assume K contains n′+ < n+ positive images,
P = N 6= ∅. We have,

`k(s,y) =
∑
zi∈K

ŝi −
∑

zi∈P
⋃
K\N

ŝi

=γ(k − n′+) +
∑
zi∈K

si −
∑

zi∈P
⋃
K\N

ŝi

=γ(k − n′+) +
∑

zi∈K\N

si +
∑
zi∈N

si −
∑

zi∈P
⋃
K\N

ŝi

(6)

|N | = n+−n′+. Based on the definition ofN and the large
margin condition,∑

zi∈N
si ≤ γ(n′+ − n+) +

∑
zi∈P

si (7)

So

`k(s,y) ≤ γ(k − n+) +
∑

zi∈P
⋃
K\N

si − ŝi (8)

The set P
⋃
K\N contains k − n+ negative images. So

`k(s,y) ≤ 0. Since we already known `k(s,y) ≥ 0 from
Theorem 1, we conclude `k(s,y) = 0.

We now prove the two properties of Case 2 in the follow-
ing 2 Theorems. 1

Theorem 3. Upper bounding: For any n+ > k, and s,

`k(s,y) ≥ γ`Prec@k(s,y) (9)

1A special case of was proven in [13]
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Proof. The set P
⋃
K\N contains only k positive images.∑

zi∈P
⋃
K\N

ŝi =
∑

zi∈P
⋃
K\N

si (10)

which is different from Eq 4 in Theorem 1. Other steps of
this proof is straight forward, so we omit them for concise.

Theorem 4. Consistency: For n+ > k, when there is a
large margin γ between the top k positive and the top nega-
tive images, i.e. s+[k] − s

−
[1] ≥ γ, we have `Prec@k = `k = 0.

Proof. We also assumes n′+ < n+. So

`k(s,y) =
∑
zi∈N

ŝi −
∑
zi∈P

ŝi = γ|N |+
∑
zi∈N

si −
∑
zi∈P

si (11)

Given the large margin condition,
∑

zi∈P si−
∑

zi∈N si ≥
γ|N |, We have `k(s,y) ≤ 0. Combining with the above
theorem `k(s,y) ≥ 0, we have `k(s,y) = 0.



P/R@1 P@3 P@5 P@10 R@3 R@5 R@10 NMI mAP F1
CUB-200-2011

Uniform Triplet 44.53 40.64 38.83 35.45 64.84 73.80 83.12 54.96 20.75 19.42
Hard Mining Triplet 53.88 50.01 47.64 43.92 72.64 79.74 87.51 62.17 27.14 30.02
Semi Hard Tripltet 51.87 48.62 46.58 43.18 71.44 79.03 86.75 61.14 27.16 27.01
Distance Weighted 50.49 46.70 44.18 40.64 70.44 77.94 86.44 60.41 24.59 27.87
Contrastive Loss 39.69 36.19 34.01 31.01 59.06 68.11 80.17 53.09 18.33 20.48
Lifted Struct Loss 45.19 41.37 39.10 35.94 66.00 74.11 83.59 58.07 21.86 23.58
N-Pair Loss 50.61 47.75 45.22 41.56 69.68 76.86 85.62 59.56 25.79 25.97
Angular Loss 51.98 47.58 45.14 41.03 71.42 78.93 86.80 60.99 24.32 27.83
Proxy NCA Loss 52.70 48.79 46.34 42.42 71.48 78.54 86.14 61.64 26.13 28.52
Ours `k 54.12 50.17 47.90 44.43 72.69 80.30 87.98 63.53 27.79 31.70

Standford Cars
Uniform Triplet 52.97 45.46 41.16 34.61 70.51 77.17 85.02 44.73 12.97 12.00
Hard Mining Triplet 69.12 62.05 57.74 51.00 83.20 87.76 92.19 57.00 22.38 25.29
Semi Hard Triplet 62.35 56.00 52.19 46.35 77.92 83.68 89.19 54.19 21.87 22.32
Distance Weighted 59.02 52.75 48.80 42.95 75.55 81.29 87.52 52.36 19.98 20.42
Contrastive Loss 38.00 30.71 27.19 22.39 54.32 62.61 73.23 34.93 7.49 7.00
Lifted Struct Loss 56.56 49.04 44.71 37.97 73.31 79.34 86.16 46.27 14.47 13.25
N-Pair Loss 61.75 53.70 49.18 42.27 77.01 82.60 88.53 49.47 16.56 15.63
Angular Loss 71.44 64.73 60.70 53.57 84.28 88.65 92.81 57.40 23.48 25.28
Proxy NCA Loss 72.39 66.14 62.05 54.98 85.46 89.71 93.40 59.00 24.18 27.21
Ours `k 73.34 67.37 63.34 56.17 86.29 90.38 94.12 59.64 24.79 27.73

Online Product
Uniform Triplet t 61.82 45.97 36.30 23.19 70.65 74.08 78.30 27.36 44.35 24.27
Hard Mining Triplet 72.94 57.65 46.87 30.51 80.62 83.58 86.97 36.54 37.45 33.79
Semi Hard Triplet 67.46 51.88 41.58 26.81 75.68 79.02 83.11 32.05 49.52 27.85
Distance Weighted 67.21 51.69 41.55 26.88 75.50 78.74 82.56 27.65 49.55 25.50
Contrastive Loss 58.14 41.97 32.56 20.52 66.71 70.33 74.83 26.98 41.14 25.63
Lifted Struct Loss 64.45 48.60 38.63 24.73 72.89 76.31 80.34 37.84 46.72 33.52
N-Pair Loss 65.51 49.76 39.70 25.51 73.84 77.29 81.39 35.86 47.74 31.09
Angular Loss 68.43 52.66 42.33 27.37 76.66 79.79 83.61 30.04 50.43 27.77
Proxy NCA Loss 67.21 51.50 41.25 26.26 75.43 78.73 82.61 36.37 49.32 31.90
Ours `k 74.95 59.90 48.89 31.89 82.40 85.24 88.45 38.03 52.34 35.27

Table 1. Comparison with state-of-the-art sampling methods and loss functions on three benchmark datasets. The network backbone is
Inception with batch normalization layer. “P” is for precision and “R” is for Recall. Note that NMI and F1 in Online Product Dataset are
computed by 12 super categories for time efficiency.

Backbone Uniform Hard Semi-hard Distance Contrastive Lifted Npair Angular Proxy Ours
Inception 88.20 89.53 89.49 89.57 87.21 88.69 88.94 89.77 86.91 90.07
Dense201 87.89 90.95 90.98 90.23 87.19 88.76 89.48 91.03 89.54 91.94

Table 2. In our previous tables on Online Product, we reported the NMI and F1 on 12 super classes for time efficiency. For easy comparison
with that in literature, we also report the NMI for 11k fine-grained classes.



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ec

is
io

n

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e 
Po

si
tiv

e 
R

at
e

Our Loss
Contrastive Loss
Uniform Triplet Loss
Npair Loss
Lifted-struct Loss
Angular Loss
Semi-hard Triplet Loss
Hard-negative-mining Loss
Distance-weighted Loss
Proxy-nca Loss

0 10000 20000 30000 40000
# Learning Iterations

0.60

0.65

0.70

0.75

Pr
ec

is
io

n@
1 

on
 th

e 
O

nl
in

e 
Pr

od
uc

t T
es

t S
et

Our Loss
Uniform Triplet Loss
Semi-hard Triplet Loss
Hard-negative-mining Triplet Loss
Distance-weighted Loss

(a). Precision vs Recall, Cars (b). ROC, Cars (c).P@1 vs iteration number, Online

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ec

is
io

n

10 5 10 4 10 3 10 2 10 1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
T

ru
e 

Po
si

tiv
e 

R
at

e

Our
Contrastive
Uniform Triplet
Npair
Lifted-struct

Angular
Semi-hard Triplet
Hard-negative-mining
Distance-weighted
Proxy-nca

0.0 0.2 0.4 0.6 0.8 1.0
# Triplets 1e7

55

60

65

70

75

80

Pr
ec

is
io

n@
1 

on
 th

e 
O

nl
in

e 
Pr

od
uc

t T
es

t S
et

Our
Uniform Triplet
Semi-hard Triplet
Hard-negative-mining Triplet
Distance-weighted

(d).Precision vs Recall, Online (e).ROC, Online (f). P@1 vs triplets number, Online
Figure 1. Precision vs Recall curve, ROC curve on Cars and Online Product dataset (a,b,d,e, shared legend). The top-1 precision on test
data along the training process of Online Product dataset. (c, f, shared legend). Our algorithm outperforms all baselines.Other results in
our main file. The steps in performance gain in figure (c) is due to the decrease in learning rate.

Figure 2. Barnes-Hut t-SNE visualization of our embedding on the test split of Online Product dataset. The embedding generated by the
proposed algorithm put similar images in clusters. Best viewed on a monitor zoomed in.


