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1. Hyper-parameters

params NABirds CUB-Birds Cars Dogs Aircraft
#P 2 2 2 3 2
γ1 1 1 1 1 0.5
γ2 0.25 0.25 0.25 0.5 0.1
γ3 1 1 1 1 0.1
λ1 1 1 1 1 1
λ2 1 1 1 1 1

Table 1. Hyper-parameters of Cross-X with SENet-50 backbone.

params NABirds CUB-Birds Cars Dogs Aircraft
#P 2 2 2 2 2
γ1 0.5 0.5 1 0.01 0.5
γ2 0.25 0.25 0.25 0.01 0.1
γ3 0.5 0.5 1 1 0.5
λ1 1 1 1 1 1
λ2 1 1 1 1 1

Table 2. Hyper-parameters of Cross-X with ResNet-50 backbone.

Cross-X learning involves 6 hyper-parameters — P , γ1, γ2, γ3, λ1, λ2. Among them, P is the number of excitations
employed in OSME; γ1, γ2 and γ3 are used to balance the effects of C3S for different layers (see Eq. (10)); λ1 and λ2 are
adopted to adjust the effects of CL (see Eq. (11)). These hyper-parameters are determined by evaluating models on hold-out
validation datasets. The hyper-parameters for various datasets are presented in Tab. 1 and 2.

2. Training details
All experiments in ablation studies are implemented on the SENet backbone (Sec. 4.3). On all datasets, images are resized

to 448 × 448 for training and testing. OSMEs with 2 excitations are used in all experiments on all datasets except that on
Stanford Dogs where 3 excitations are employed.

To present the state-of-the-art performance (Sec. 4.4), images on CUB-Birds, NABirds, and VGG-Aircraft are first resized
to 600 × 600, and then image patches of size 448 × 448 from random cropping and center cropping are used for training
and testing, respectively. We did not observe any advantage of this trick on Stanford Cars and Stanford Dogs, thus default
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operations as that implemented in the ablation study are employed on these two datasets. The re-implementation of SENet-50
and ResNet-50 in Sec. 4.4 also obeys these operation rules.

3. Visualization
We display additional activation maps in this section for images from birds (Fig. 1), cars (Fig. 2), aircraft (Fig. 3) and dogs

(Fig. 4). The images shown here are consistent with the analysis presented in Section 4.5 of the paper.
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Figure 1. Superimposed display of activation maps (b) UL−1
p , (c) UL

p and (d) UG
p for images from CUB-Birds. The first column (a) shows

original images and the last two columns (e) are combined activation maps from corresponding columns of UL−1
p , UL

p and UG
p . Each of

(b)∼(e) shows the activations of two excitation modules in corresponding layers. Best viewed in color.
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Figure 2. Superimposed display of activation maps (b) UL−1
p , (c) UL

p and (d) UG
p for images from Stanford Cars. The first column (a)

shows original images and the last two columns (e) are combined activation maps from corresponding columns of UL−1
p , UL

p and UG
p .

Each of (b)∼(e) shows the activations of two excitation modules in corresponding layers. Best viewed in color.
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Figure 3. Superimposed display of activation maps (b) UL−1
p , (c) UL

p and (d) UG
p for images from FGVC-Aircraft. The first column (a)

shows original images and the last two columns (e) are combined activation maps from corresponding columns of UL−1
p , UL

p and UG
p .

Each of (b)∼(e) shows the activations of two excitation modules in corresponding layers. Best viewed in color.

Figure 4. Superimposed display of activation maps UL−1
p (2nd row), UL

p (3rd row) and UG
p (4th row) for images from Stanford Dogs.

The first row shows original images and the last row are combined activation maps from corresponding rows of UL−1
p , UL

p and UG
p . Each

row shows the activations of three excitation modules in corresponding layers. Best viewed in color.


