A. Overview

This document provides additional technical details and
extra analysis experiments to the main paper.

In Sec. B, we provide the information about the accuracy
of mentioned depth maps while Sec. C shows the detection
performance using stereo images and LiDAR point clouds.
Then, Sec. D explains the correlation between 2D detec-
tor and resulting 3D detection performance. Finally, Sec. E
presents detection results of pedestrian and cyclist.

B. Accuracy of Depth Maps

Tab. 10 and Tab. 11 show the accuracy of the monocular
and stereo depth prediction methods listed in Tab. 7, respec-
tively. Combined with Tab. 7, it is evident that 3D detection
accuracy increases significantly when using much more ac-
curate depth (or disparity). Note that the metrics for these
two kinds of methods are different.

Abs Rel | SqRel | RMSE | RMSE,,,
MonoDepth 0.097 0.896 | 5.093 0.176
DORN 0.071 0.268 2.271 0.116

Table 10. Accuracy of depth prediction (monocular) on KITTI val-
idation set. lower is better.

Dl-bg | DI-fg | Dl-all
DispNet || 432 % | 441 % | 434 %
PSMNet || 1.86 % | 4.62% | 2.32 %

Table 11. Accuracy of depth prediction (stereo) on KITTI zesr set.
lower is better.

C. Extensions of Stereo and LiDAR

To further evaluate the proposed method, we extend it to
stereo-based and LiDAR-based versions. We select some
representational methods based on stereo images (or Li-
DAR point clouds) and report the comparative results in Ta-
ble 12. The experimental results show that our method is
able to give a competitive performance when using LiDAR
point clouds or stereo images as input.

Note that the proposed method with LiDAR point cloud
input outperforms F-PointNet [27] by 1.8 AP3p, which
proves that our RGB fusion module is equally effective for
LiDAR-based methods.

D. 2D Detectors

Tab. 13 shows the correlation between the performance
of 2D detectors and resulting 3D detection performance.
We can see that improving the performance of 2D detec-
tor is an effective method to improve the overall detection

Method Data Easy | Mod. | Hard
3DOP [4] Stereo | 6.55 | 5.07 | 4.10

Multi-Fusion [38] || Stereo - 9.80 -
ours Stereo | 45.85 | 26.03 | 23.16
VoxelNet [43] LiDAR | 81.97 | 65.46 | 62.85
FPointNet [27] LiDAR | 83.26 | 69.28 | 62.56
ours LiDAR | 84.53 | 71.07 | 63.49

Table 12. APY; (%) of extended versions of proposed method and
related works.

accuracy. However, the huge gap between the performance
of 2D detector and final 3D estimator reveals there is still a
lot of room for improvement without modifying the 2D de-
tector. The implementation details of the 2D detectors we
used can be found in RRC [32] and F-PointNet [27].

APsp APsp
Easy | Mod. | Hard | Easy | Mod. | Hard
[32] | 88.4 | 86.7 | 76.6 | 31.1 | 20.0 | 16.8
[277 ] 90.5 | 89.9 | 80.7 | 32.2 | 21.1 | 17.3

Table 13. Comparisons of different 2D detectors. Metrics are
AP>p and APsp on KITTI validation set.

E. Pedestrian and Cyclist

Most of previous image-based 3D detection methods
only focus on Car category as KITTI provides enough in-
stances to train their models. Our model can also get a
promising detection performance on Pedestrian and Cyclist
categories because it is much easier and effective to do data
augmentation for point clouds than depth maps used in pre-
vious methods. Table 14 shows their AP,,. and APs;p on
KITTTI validation set.

Category | IoU | Task | Easy | Moderate | Hard
Pedestrian | 0.25 | Loc. | 40.77 34.02 29.83
Pedestrian | 0.25 | Det. | 40.17 33.45 29.28
Pedestrian | 0.5 | Loc. | 14.30 11.26 9.23
Pedestrian | 0.5 | Det. | 11.29 9.01 7.04

Cyclist 0.25 | Loc. | 28.15 17.79 16.57
Cyclist 0.25 | Det. | 24.80 15.66 15.11
Cyclist 0.5 | Loc. | 10.12 6.39 5.63
Cyclist 0.5 | Det. | 8.90 4.81 4.52

Table 14. Benchmarks for Pedestrian and Cyclist. 3D localization
and detection AP(%) on KITTI validation set for Pedestrian and
Cyslist. The IoU threshold is set to 0.25 and 0.5 for better compar-
ison.



