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1. Network Architectures and Parameter Settings
We provide implementation details of our model with the parameter settings used in our experiments. We encourage the

readers to refer to Figure 3 and Figure 4 of our main paper when reading this section. We use the following notations to refer to
commonly used computation blocks in the neural networks: Conv1D(#channels, kernel size, stride size), Conv2D(#channels,
kernel size, stride size), FC(#units), GRU(#units). ⊕(·)res refers to the residual connection. We use the superscript j to refer
to the modalities j ∈ {img, txt, spch}.

1.1. Encoders (Figure 3 (left) in the main paper)

• Image encoder: ximg → Conv2D(64, 4, 2)→ BN→ ReLU→ Conv2D(128, 4, 2)→ BN→ ReLU→ Conv2D(256,
4, 2)→ BN→ ReLU→ Conv2D(512, 4, 2)→ BN→ ReLU→MaxPool→ eimg

• Text encoder: xtxt → LookupTable(66, 128) → FC(256) → ReLU → Dropout(0.5) → FC(128) → ReLU →
Dropout(0.5)→ CBHG [2]→ AvgPool→ FC(512)→ tanh→ etxt ∈ R512

• Speech encoder: xspch→ Conv2D(32, 3, 2)→ BN→ ReLU→ Conv2D(64, 3, 2)→ BN→ ReLU→ GRU(256)→
FC(512)→ tanh→ espch

1.2. Multimodal Information Bottleneck (Figure 4 in the main paper)

• Modality transformer: ej → FC(256)→ ReLU→⊕
(

Conv1D(256, 1, 1)→ ReLU→ BN→ Conv1D(256, 1, 1)→

ReLU→ BN)
)
res
→ tanh→ zj

• Memory fusion module:

1. Define: Memory M ∈ Rnk×dk/nheads , where nk = 128, dk = 256, nheads = 4

2. Query qjzj , Key k Conv1D(256, 1, 1)(tanh(M )), Value v tanh(M )
3. (qj

h,kh,vh)SplitHeads(qj ,k,v), h = 1, · · · , nheads
4. αj

hSoftMax
(
qj
hkh/

√
dk

)
, h = 1, · · · , nheads

5. uj
hα

j
h × vh, h = 1, · · · , nheads

6. uj ConcatHeads(uj
h)

1.3. Decoders (Figure 3 (right) in the main paper)

• Image decoder: utxt → Conv2Dᵀ(32, 4, 2)→ BN→ ReLU→ Conv2Dᵀ(16, 4, 2)→ BN→ ReLU→ Conv2Dᵀ(8,
4, 2)→ BN→ ReLU→ Conv2Dᵀ(8, 4, 2)→ tanh→ yimg

• Text decoder: uimg→ Dropout(LSTM(128), 0.3)→ Dropout(LSTM(128), 0.3)→ FC(nsymbols)→ SoftMax→ ytxt

• Speech decoder: utxt→AttentionRNN(GRU 256)→DecoderRNN6(Dropout(LSTM(256), 0.3)→Dropout(LSTM(256),
0.3))→ reshape→ ymel−spectrogram→ CBHG [2] (80 mels)→ FC(1025)→ Griffin-Lim (ylinear)→ yspeech



Figure 1. Image-to-speech synthesis results. Green: Fine-grained and correct instances synthesized by our model. Red: incorrect pronun-
ciation synthesized by the piecewise model. Audio samples are available at https://bit.ly/2U7741S

2. Skip-Modal Synthesis Results
Figure 1 shows additional image-to-speech synthesis results; we manually transcribed the synthesized audio outputs for

the purpose of presentation. Consistent with the qualitative results reported in the main paper (Figure 5), we see that our
approach produces more detailed descriptions and has a larger vocabulary than the baseline. We encourage the readers to
visit our anonymized website and listen to the audio samples: https://bit.ly/2U7741S

3. Cross-Modal Retrieval Results
Besides the synthesis tasks, another way to evaluate the performance of our model is via cross-modal retrieval. In this

section, we show qualitative results of cross-modal retrieval where we use an instance from either dataset and find the most

https://bit.ly/2U7741S
https://bit.ly/2U7741S


Figure 2. Cross-Modal retrieval results. The first column shows queries from each modality. The second and third columns show the top-3
retrieval results from the other two modalities. Audio samples are available at https://bit.ly/2U7741S

similar instances from different modalities from both datasets. Specifically, we compute uj from all instances in the test
splits of both datasets, and compute the cosine similarity between any pair of cross-modal instances.

Figure 2 shows the top 3 retrieved results in different combinations of modalities. We can see that the retrieved results
are very related to the query at the object level, e.g., “dog” and “zebra” in the first and the second rows, while on the other
two rows the results are related to the query at the scene/context level, e.g., “baseball game” and “birthday party”. It is
particularly interesting to see that the results are reasonable even for the cross-dataset retrieval settings (using an image from
COCO to retrieve audio/speech instances from EMT-4). This suggests the representations extracted using our model are not
very sensitive to the dataset and the modalities involved.

https://bit.ly/2U7741S


Batch Sam-
pling Strategy

B@1
(I2T)

WER
(S2T)

WER
(T2S)

Alternative 74.1 3.88 10.5
Mixing 74.5 3.76 10.5

Table 1. Evaluation of different batch sampling strategies. I2T: image-to-text, S2T: speech-to-text, T2S: text-to-speech.

nk (fix dk = 256) 10 128 256
BLEU-1 62.5 74.1 73.9

dk (fix nk = 128) 64 128 256
BLEU-1 49.3 70.2 74.1

Table 2. Sensitivity of the memory fusion module. nk : the number of basis vectors, dk: the size of each basis vector.

4. Additional Ablation Experiments
4.1. Different Batch Sampling Strategies

As we trained our model on a combination of two datasets, there comes two ways to perform mini-batch training: one that
samples instances from only one dataset and alternates between the two (alternate); and another that always samples instances
from both datasets (mixing). We compare these two batch sampling strategies in this section. Specifically, in the first setting
(alternative) we sample eight instances from either the COCO or EMT-4 dataset, while in the second setting (mixing) we
sample four instances from COCO and the other four from EMT-4. We evaluate this on image-to-text (I2T), speech-to-text
(S2T), and text-to-speech (T2S) synthesis tasks, reporting BLEU-1 for I2T and the word error rate (WER) for the other two.

Table 1 shows that the performance improves when we use the mixed batch sampling strategy. The improvement is
especially pronounced for the text-sensitive tasks; on image-to-text synthesis the BLEU-1 is improved from 74.1 to 74.5, and
on speech-to-text synthesis the WER is reduced from 3.88 to 3.76. We did not find significant differences in the text-to-speech
synthesis task.

4.2. Sensitivity Analysis of Memory Fusion Module with parameters nk and dk

As we showed in Table 4 (ablation results) in the main paper, the memory fusion module plays an important role in
our model; the performance drops most significantly when we bypass this module. It extracts compact, modality-agnostic
representations of the multimodal inputs following the information bottleneck principle [1], using the shared external memory
M to “bottleneck” any redundant and modality-specific information from leaking into the output representation. To better
understand the behavior of this module, we analyze the sensitivity of the module to two hyper-parameters: the number of basis
vectors (nk) and the size of each basis vector (dk) inside the external memory variable M . We evaluate this on image-to-text
generation (i.e., image captioning) and report the results using BLEU-1 as our metric.

Table 2 shows our model is more sensitive to the dimension of each basic vector dk than the number of basis vectors nk;
it achieves a significantly lower performance with dk = 64 compared to any other combination of the two parameter values.
The performance improves as we increase dk, achieving the best performance when dk = 256; we did not evaluate beyond
dk = 256 due to the limitations on the GPU memory. As for the number of basis vectors nk, we can see the performance is
low when there are only a few of them (nk = 10). This shows we need a large number of basis vectors to capture the variety
of information contained in multimodal data. We found that the performance is relatively stable when nk is greater than 128.
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