
Supplemental Material to “Drive&Act: A Multi-modal Dataset

for Fine-grained Driver Behavior Recognition in Autonomous Vehicles”

Manuel Martin∗1 Alina Roitberg∗2 Monica Haurilet2 Matthias Horne1

Simon Reiss2 Michael Voit1 Rainer Stiefelhagen2

1Fraunhofer IOSB, Karlsruhe 2 Karlsruhe Institute of Technology (KIT)
∗ equal contribution

Abstract

This supplemental document describes additional details

about our dataset, baseline methods and evaluation results.

It is structured as follows:

Section 1 presents additional details about our data col-

lection setup.

Section 2 describes the parametrization of our baseline

models.

Section 3 shows sample images of our dataset and their

annotation.

1. Experimental setup

Although we collected our dataset in a driving simulator

we aim to keep the surroundings as close to the real driv-

ing experience as possible. To achieve this our simulator

is equipped with a real car instead of a simplified mockup.

This section provides additional details about this setup and

the collected data.

1.1. Driving simulator

Figure 1 shows the surroundings of our simulator. The

simulator vehicle is an Audi-A3. It is surrounded by three

projection screens achieving a simulated field of view of

about 200 degrees for the driver of the simulator. In addition

we position a flat screen behind the vehicle to facilitate sim-

ulation of the center mirror and the view back through the

center of the vehicle. The outer mirrors are also modified

with displays to enable simulation. Steering wheel simula-

tion and feedback is provided by an electric motor on the

drive shaft. All parts of the interior are modified to func-

tion properly in the simulation. In addition the dashboard

is heavily modified to maximize screen space for future ex-

perimentation (see Figure 2).

Figure 1: Overview of the simulator setup including the pro-

jection screens.

1.2. Camera setup

Figure 2 shows the interior of the simulator annotated

with the position of all cameras used in the experiment. We

designed the camera setup this way with different goals in

mind. The setup contains a close approximation of all views

suitable for monitoring the entire driving area both with re-

gard to the viewing angle as well as integration of a future

miniaturized commercial product. This enables investiga-

tion of each view separately to achieve the best possible

result as well as experimentation for generalization to mul-

tiple views. In addition we also provide a detailed view of

the drivers face with a camera mounted behind the steering

wheel because this view is very popular for facial analysis

and eye gaze estimation but provides challenges for action

recognition because of its limited field of view. We also

wanted to use triangulation to determine the 3d body pose,

which is possible with this setup.

All views are at least equipped with a NIR-camera. We

add active illumination via infrared light at 850nm and

equip each camera with a narrow bandpass filter for this

wave to be as independent as possible from external illu-

mination. In addition we use a Microsoft Kinect v2 on the

1

Kinect

Right-top

Back

Left-top

Face-view

Front-top

Figure 2: Interior of the simulator depicting the modified

dashboard and camera positions.

Figure 3: The interior model of the car. Green denotes stor-

age areas, blue denotes car controls and gray remaining re-

gions. Camera positions are depicted as coordinate systems.

co-driver side. We chose this depth camera because of its

high depth resolution. However, integrating it without ob-

structing the drivers view is challenging because of its size

and small viewing angle. The sensor is therefore positioned

at the point furthest away from the driver that still provides

a good view of the area.

1.3. 3D pose representation

Figure 4 show the body joints that are reliably provided

in our dataset. The used detector OpenPose provides a more

detailed representation of the whole body but because of

occlusion the respective body parts are never visible or only

visible for a short time. We provide all data generated by

OpenPose but we report only reliably detected joints.

1.4. 3D interior representation

Figure 3 shows the interior model of the car provided

with the dataset. It is built out of cylinders and cubes so

it is easy to use and reason about compared to a more de-

tailed representation with a 3D mesh. We built this model

by using the point cloud of the Kinect as a guide to man-

ually position each primitive. Movable parts like the seats

are adapted for each sequence. Overall our model consists

of 21 named primitives. It contains all parts of the car inte-

rior with semantic meaning for the actions in our dataset.

2. Model Parametrization

In the following we describe the structure and training

parameters of all our baseline models. We train separate

models for each of the three annotation levels. The anno-

tation of atomic actions consists of triplets. We train three

separate networks, one for each part of the triplets, because

we found that this improves results compared to training a

single model with three output layers.

2.1. EndToEnd Models

We train our networks end-to-end using stochastic gradi-

ent descent (SGD) with momentum, employing early stop-

ping on the validation set with the maximum of epochs set

to 150. The video streams of all views and modalities are

first rescaled to 252×256 pixel, and further augmented with

random cropping to obtain the resolution needed for the spe-

cific network, as done in [4]. The resolution of the final crop

used as input to our network is 224×224 for I3D, 160×160

for P3D Resnet and 112 × 112 for C3D. For testing, we

follow the standard practice of replacing the pre-processing

pipeline with a center crop[4]. The processing of the tem-

poral dimension was adapted based on the capabilities of

the respective model (16 frames for C3D and P3d ResNet

and 64 frames for I3D). Frames are randomly selected from

the provided three seconds long video samples (see Section

3.3 of the main paper). The network architecture-related pa-

rameters (e.g.dropout, input size) were set according to the

original architectures[4, 8, 7]. We apply a weighted sampler

to balance the dataset classes for training.

Inflated 3D ConvNet We use the Pytorch [6] implemen-

tation of the Inflated 3D architecture (I3D) [4] with its pre-

trained weights on the Kinetics dataset provided by [2]. We

set the initial learning rate to 0.01, and divide it by a fac-

tor of 10 after 50 and 100 epochs. We use momentum of

0.9, weight decay of 1e-7 and a mini-batch size of 8. Dur-

ing training, temporal data augmentation samples clips of

64 frames and spacial data augmentation computes random

crops of size 224× 224.

P3D ResNet We use the Pytorch [6] implementation

of the Pseudo 3D ResNet (P3D) [7] with its pre-trained

weights on the Kinetics dataset provided by [3]. We set the

2

3 4

6

7

9

10

15 8

1112 13

3, 4 Eyes

2 Nose

1 Neck

5, 8 Shoulders

6, 9 Elbows

7, 10 Wrists

11 Pelvis

12, 13 Hips

Figure 4: Annotated body joints and joint sequence used for

the spatial stream

initial learning rate to 0.01, and divide it by a factor of 10

after 50 and 100 epochs. We use momentum of 0.9, weight

decay of 1e-7 and a mini-batch size of 16. During training,

temporal data augmentation samples clips of 16 frames at a

random position, and spacial data augmentation computes

random crops of size 160× 160.

C3D For C3D [8], we use the Pytorch[6] implementation

with its pre-trained weights on the Sports 1-M dataset pro-

vided by [1]. The initial learning rate is set to 3∗10−4 , and

divided by half after every 20 epochs. We use momentum

of 0.9 and a mini-batch size of 16. Similar to the original

paper [8], we do not use weight decay in this architecture.

During training, temporal data augmentation samples clips

of 16 frames at a random position, and spacial data augmen-

tation computes random crops of size 112× 112.

2.2. Body Pose and CarInterior Architecture

As described in the main paper the core model for each

stream of the body pose based action recognition system

is the same. It consists of two recurrent layers with 512

LSTM-units followed by a fully connected layer with Soft-

max activation. All models are trained with the Adam op-

timizer [5] using the default parameters of Keras. Models

are trained for 100 epochs, employing early stopping on the

validation set. For training we use a batch size of 128 sam-

ples selected balanced from the training dataset. We use a

fixed history of 90 frames. If the annotation is shorter than

90 frames we pad the beginning with zeros. To combine

different streams we employ weighted averaging. We com-

pute the weights on the validation set using grid search. In

contrast to the end-to-end models no pre-training or data

augmentation is used. In the following we describe the in-

put of each stream in more detail.

Temporal Stream The input of the temporal stream con-

sist of the concatenation of the 13 main joints depicted in

Figure 4 resulting in a input feature with 39 × 90 dimen-

sions.

Spatial Stream The joint sequence used for the spatial

stream is depicted in Figure 4. For each joint in the se-

quence we concatenate all joints in the 90 frames window

resulting in a input feature with 270× 23 dimensions.

Interior Stream The input feature of the interior stream

consists of distances of body joints to the surface of the

primitives of our interior model. We focus on the body parts

that are most important for action recognition namely the

hands and the head and compute the distance of all three

joints to all primitives of the interior model. The dimension

of the input feature of this stream is therefore 63× 90.

3. Examples of individual activity classes

In the following, we provide examples of all annotated

classes. We first describe all 34 concise fine-grained ac-

tivities in Section 3.1. Then, we visualize frames with

annotations of their atomic action units, which comprise

of {Action, Object, Location} triplets in Section 3.2(6 ac-

tions, 17 objects and 14 locations respectively). Finally, in

Section 3.3, we visualize an example segment for each of

the 12 possible high-level scenarios/tasks.

3.1. Finegrained Activities (level 2)

In Figure 5 and Figure 6 we provide an example image

for each of the 34 fine-grained activity labels (visualization

of Kinect RGB view for different subjects).

3.2. Atomic Action Units (level 3) and complete an
notation examples

In Figure 7, we aim at covering all atomic action units

and provide examples of their combinations, with com-

plete annotations (all levels of granularity) The text below

each recorded frame depicts our provided annotations: the

first annotation row represents the high-level scenario/task

(level 3); the second row provides additional annotation

of the driving context (e.g.steering left hand); the third

row is the annotation of the fine-grained activity (level 2);

the fourth, fifth and sixth rows represent the annotation of

atomic action units, standing for the action, object and lo-

cation of the current interaction.

3.3. Scenarios/Tasks (level 1)

We further visualize example progression for each of the

twelve high level scenarios/tasks (Figure 8 and Figure 9).

Due to the longer duration and compositional nature of the

tasks, we visualize multiple steps that took place and pro-

vide the corresponding annotation of the fine-grained activ-

ity of this step. The way of completing the task and there-

fore the fine-grained activities that took place during its ex-

ecution, was left to the subject. Fine-grained activities and

their order in Figure 8 and Figure 9 are therefore just exam-

ples of how the person decided to accomplish the task.

closing door outside opening door outside entering car closing door inside

fastening seat belt using multimedia display sitting still pressing automation button

fetching an object opening laptop working on laptop interacting with phone

closing laptop placing an object unfastening seat belt putting on jacket

opening bottle drinking closing bottle looking or moving around

preparing food eating taking off sunglasses putting on sunglasses

reading newspaper writing talking on phone reading magazine

Figure 5: Sample images extracted from video files, displaying all 34 fine-grained activity classes.

taking off jacket opening door inside exiting car opening backpack

putting laptop into backpack taking laptop from backpack

Figure 6: Continuation of figure 5

eat drink

–

closing bottle

closing

front area

bottle

eat drink

–

fetching an object

reaching for

codriver seat

food

driving preparation

steering left hand

–

interacting

–

gearstick

–

–

placing an object

placing moving to

center console back

pen

put on jacket

–

putting on jacket

interacting

front area

jacket

put on sunglasses

–

putting on sunglasses

placing moving to

head

glasses

read magazine

–

fetching an object

reaching for

right backseat

writing pad

read newspaper

–

fetching an object

retracting from

left backseat

newspaper

work on laptop

–

working on laptop

interacting

lap

laptop

work on laptop

–

opening backpack

opening

codriver seat

backpack

watch video

–

placing an object

placing moving to

codriver footwell

bottle

put on sunglasses

–

fetching an object

retracting from

driver door

glasses case

Figure 7: Sample images covering different instances of atomic action units, provided with complete annotations. Text

below the images are annotations for each level. First row: high-level scenario/task (level 3); Second row : additional

annotation of the driving context (e.g.steering left hand); Third row: fine-grained activity (level 2); Fourth, fifth and sixth

rows: atomic action units, standing for the action, object and location of the current interaction. Note, that - depicts no

present activity at the corresponding level.

Task: eating/drinking

fetching an object eating fetching an object opening bottle drinking closing bottle placing an obejct

Task: driving preparation

standing by the door opening door outside entering car closing door inside fastening seat belt

Task: put on sunglasses

looking or moving around fetching an object taking off sunglasses placing an object putting on sunglasses

Task: take off jacket

placing an object unfastening seat belt taking off jacket placing an object fastening seat belt

Task: working on laptop

opening backpack taking laptop from backpack opening laptop working on laptop interacting with phone closing laptop placing an object

Task: read newspaper

fetching an obejct reading newspaper placing an object fetching an object writing placing an object

Figure 8: Example sequences taken from different subjects solving each of the twelve tasks. Caption over the sequence row

depicts the current task, while annotations under the images show the fine-grained activities that occurred at this step.

Task: watch video

sitting still opening bottle drinking placing an object eating sitting still

Task: put on jacket

fetching an object putting on jacket putting on jacket using multimedia display

Task: park car and exit

pressing automation button using multimedia display unfastening seat belt opening door inside exiting car closing door outside

Task: read magazine

fetching an object reading magazine using multimedia display reading magazine placing an object

Task: take off sunglasses

sitting still taking off sunglasses placing an object using multimedia display

Task: take over steering

eating placing an object – pressing automation button

Figure 9: Continuation of Figure 8. For the task take over steering the fine-grained activity is left blank as steering is

mentioned under additional annotations.

References

[1] C3D implementation in Pytorch. https://github.com/

DavideA/c3d-pytorch. 3

[2] Inflated 3D Network (I3D) implementation in Pytorch.

https://github.com/hassony2/kinetics_i3d_

pytorch. 2

[3] Pseudo 3D Resnet implementation in Pytorch. https://

github.com/qijiezhao/pseudo-3d-pytorch. 2

[4] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In Pro-

ceedings of the Conference on Computer Vision and Pattern

Recognition, pages 6299–6308, 2017. 2

[5] Diederik P. Kingma and Jimmy Ba. Adam: A Method for

Stochastic Optimization. arXiv:1412.6980 [cs], Dec. 2014.

arXiv: 1412.6980. 3

[6] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban

Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-

entiation in pytorch. 2017. 2, 3

[7] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-

temporal representation with pseudo-3d residual networks. In

Proceedings of the International Conference on Computer Vi-

sion, pages 5533–5541, 2017. 2

[8] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. Learning spatiotemporal features with 3d

convolutional networks. In Proceedings of the International

Conference on Computer Vision, pages 4489–4497, 2015. 2,

3

