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1. Theoretical complements

1.1. Mathematical statements

In this subsection, we first prove Lemma 1, needed to
prove then Theorem 1 appearing in our paper. Afterward,
we discuss its consequences. In all the following statements,
d denotes the canonical Euclidean metric, i.e. the metric
induced by the L2 norm, and B(a,R) is the open ball of
center a and radius R for the Euclidean metric d.

Lemma 1. For p,m ∈ N \ {0}, let gθ : Rp → Rm be a
decoder, i.e. a neural network parameterized by θ, whose
activations are either ReLU, leaky ReLU, or differentiable
activations with bounded derivative, and which can also
include max pooling layers. Then for any r > 0, there exists
kr > 0, such that for any weights θ with ‖θ‖∞ ≤ r, and any
x, y ∈ Rp,

d(gθ(x), gθ(y)) ≤ kr d(x, y) , (1)

Proof. Let gθ be a decoder from Rp → Rm, p,m ∈ N\{0},
with L layers:

gθ = g
(1)
θ1
◦ . . . ◦ g(L)θL

, (2)

where θi is the sub-vector of θ that represents the weights of
the i-th layer. Each function gθi is a mapping from Rni to
Rni+1 , all ni ≥ 1. Let r > 0 and assume ‖θ‖∞ ≤ r.

The first possibility for the i-th layer is to be a max pool-
ing layer. In that case, we can write for all j ∈ J1, ni+1K,
and for all x ∈ Rni :(

g
(i)
θi

(x)
)
j

= max
l∈Vj

xl , (3)

where Vj is a non-empty subset of J1, niK. Let y ∈ Rni .

Then we have∣∣∣∣(g(i)θi (x)
)
j
−
(
g
(i)
θi

(y)
)
j

∣∣∣∣ =

∣∣∣∣max
l∈Vj

xl −max
l∈Vj

yl

∣∣∣∣ (4)

≤ max
l∈Vj

|xl − yl| (5)

≤ ‖x− y‖∞ (6)
≤ d(x, y) . (7)

where Equation (5) is a well-known inequality, that we derive
for completeness in Lemma 2. So we get from Equation (7):

d(g
(i)
θi

(x), g
(i)
θi

(y)) ≤ √ni+1

∥∥∥g(i)θi (x)− g(i)θi (y)
∥∥∥
∞

(8)

≤ ki d(x, y) , (9)

where ki =
√
ni+1.

The second possibility for the i-th layer is to be a learn-
able layer with an activation function denoted σi. In that
case we decompose the weights θi = (w(i), b(i)), such that
for all j ∈ J1, ni+1K, and for all x ∈ Rni :

(
g
(i)
θi

(x)
)
j

= σi

(〈
w

(i)
j , x

〉
+ b

(i)
j

)
, (10)

If σi is differentiable with bounded derivative, the mean
value inequality implies that there exists ci > 0, such that
for all x, y ∈ R,

|σi(x)− σi(y)| ≤ ci |x− y| . (11)

Besides, if σi is a ReLU activation or a leaky ReLU, Equa-
tion (11) also holds with ci = 1.1 Thus, we get for all

1Notice that the existence of a constant ci > 0 for Equation (11)
obviously still holds when a layer shares different activation functions.



x, y ∈ Rni

d(g
(i)
θi

(x), g
(i)
θi

(y)) ≤
∥∥∥g(i)θi (x)− g(i)θi (y)

∥∥∥
1

(12)

≤
ni+1∑
j=1

ci

∣∣∣〈w(i)
j , x

〉
−
〈
w

(i)
j , y

〉∣∣∣
(13)

= ci

ni+1∑
j=1

∣∣∣∣∣
ni∑
l=1

w
(i)
j,l (xl − yl)

∣∣∣∣∣ (14)

≤ ci
ni+1∑
j=1

ni∑
l=1

∣∣∣w(i)
j,l

∣∣∣ |xl − yl| (15)

≤ ci ‖θ‖∞ ni+1 ‖x− y‖1 (16)
≤ ci ‖θ‖∞ ni+1

√
ni d(x, y) (17)

≤ ki d(x, y) , (18)

with ki = ci × r × ni+1 ×
√
ni.

Eventually, in both cases we have

d(g
(i)
θi

(x), g
(i)
θi

(y)) ≤ ki d(x, y) , (19)

and so if we set

kr =

l∏
i=1

ki > 0 , (20)

we finally get for all weights θ with ‖θ‖∞ ≤ r and for all
x, y ∈ Rp:

d(gθ(x), gθ(y)) ≤ kr d(x, y) . (21)

�

For completeness we prove the following lemma used in
Lemma 1.

Lemma 2. For any x, y ∈ Rn, n ∈ N \ {0}, we have:∣∣∣∣max
l
xl −max

l
yl

∣∣∣∣ ≤ max
l
|xl − yl| = ‖x− y‖∞ . (22)

Proof. For any l ∈ J1, nK, we have

xl ≤ |xl − yl|+ yl , (23)

and so

max
l
xl ≤ max

l
(|xl − yl|+ yl) (24)

≤ max
l
|xl − yl|+ max

l
yl , (25)

which implies

max
l
xl −max

l
yl ≤ max

l
|xl − yl| . (26)

Similarly, we get

max
l
yl −max

l
xl ≤ max

l
|xl − yl| , (27)

which finally allows to conclude the proof:∣∣∣∣max
l
xl −max

l
yl

∣∣∣∣ ≤ max
l
|xl − yl| = ‖x− y‖∞ . (28)

�

We now prove our main theorem.

Theorem 1. Let gθ : Rp → Rm be a decoder, p,m ∈ N \
{0}. Let M1 and M2 be two subsets of Rm such that
d(M1,M2) > 0.

Then for any r > 0, there exists Cr > 0, such that
for any weights θ with ‖θ‖∞ ≤ r, and for any continuous
path γ : [0, 1] → Rp with γ(0) ∈ g−1θ (M1) and γ(1) ∈
g−1θ (M2), there exists h ∈ γ(]0, 1[) such that:

gθ(B(h,Cr)) ⊂ (M1 ∪M2)c . (29)

Proof. Let gθ be a decoder from Rp → Rm, p,m ∈ N\{0},
M1 andM2 be two subsets of Rm such that d(M1,M2) >
0, and let r > 0. Let kr > 0 be the constant given by
Lemma 1, and define

Cr =
d(M1,M2)

2kr
> 0 . (30)

Finally, let θ be any weights such that ‖θ‖∞ ≤ r, and let
γ : [0, 1] → Rp continuous with γ(0) ∈ g−1θ (M1) and
γ(1) ∈ g−1θ (M2).

We define

D1 = d(g−1θ (M1), g−1θ (M2)) . (31)

There exist (an)n∈N a sequence of elements in g−1θ (M1),
and (bn)n∈N a sequence of elements in g−1θ (M2), such that

d(an, bn) −→
n→+∞

D1 . (32)

From Lemma 1, we have

d(M1,M2) ≤ d(gθ(an), gθ(bn)) ≤ kr d(an, bn) . (33)

Taking the limit when n→ +∞, we get

d(M1,M2) ≤ krD1 . (34)

We now define

Γ: [0, 1]→ R (35)

t 7→ d(γ(t), g−1θ (M1))− d(γ(t), g−1θ (M2)) .

Γ is continuous, Γ(0) ≤ −D1, Γ(1) ≥ D1, and since D1 >
0 as shown by Equation (34), there exists t ∈]0, 1[ such



that Γ(t) = 0. If we set h = γ(t) ∈ γ(]0, 1[) and D2 =
d(h, g−1θ (M1)), we have

D2 = d(h, g−1θ (M1)) = d(h, g−1θ (M2)) . (36)

Thus, there exist (cn)n∈N a sequence of elements in
g−1θ (M1), and (dn)n∈N a sequence of elements in
g−1θ (M2), such that

d(h, cn) −→
n→+∞

D2 and d(h, dn) −→
n→+∞

D2 . (37)

The triangular inequality then implies that

D1 ≤ d(cn, dn) ≤ d(h, cn) + d(h, dn) , (38)

and taking the limit when n→ +∞ gives

D1 ≤ 2D2 . (39)

Finally, let x ∈ gθ(B(h,Cr)), i.e. x = gθ(h
′) with h′ ∈

B(h,Cr). Since Equations (34) and (39) imply that

Cr ≤ D2 , (40)

we get that h′ ∈ B(h,D2). Assume that x ∈ M1, then we
have

D2 = d(h, g−1θ (M1)) ≤ d(h, h′) < D2 , (41)

which is impossible. Similarly, x /∈ M2, and we have
therefore proved our claim:

gθ(B(h,Cr)) ⊂ (M1 ∪M2)c . (42)

�

We end our mathematical statements with a direct corol-
lary of Theorem 1.

Corollary 1. Let gθ be a decoder from Rp → Rm, p,m ∈
N \ {0}. LetM1 andM2 be two subsets of Rm such that
d(M1,M2) > 0.

Then for any r > 0, there exists Cr > 0, such that
for any weights θ with ‖θ‖∞ ≤ r, and for any continuous
path γ : [0, 1] → Rp with γ(0) ∈ g−1θ (M1) and γ(1) ∈
g−1θ (M2), there is a path-connected subset I of γ(]0, 1[)
such that:

gθ(I) ⊂ (M1 ∪M2)c and L(I) ≥ 2Cr , (43)

where L denotes the arc length.

Proof. Let Cr > 0 and h = γ(t), t ∈]0, 1[, as provided by
the Theorem 1. Thus γ(0) /∈ B(h,Cr), and so we can define

t1 = sup {t′ ∈ [0, t] | γ(t′) /∈ B(h,Cr)} , (44)

and similarly

t2 = inf {t′ ∈ [t, 1] | γ(t′) /∈ B(h,Cr)} . (45)

Then γ(]t1, t2[) ⊂ B(h,Cr), and γ(t1), γ(t2) ∈
∂B(h,Cr) by continuity of t′ 7→ d(γ(t′), h). By definition
of the arc length

L(γ
∣∣
]t1,t2[

) ≥ L(]γ(t1), γ(t)]) + L([γ(t), γ(t2)[) (46)

= Cr + Cr = 2Cr . (47)

Besides, I = γ(]t1, t2[) is path-connected, and by the Theo-
rem 1, for any θ with ‖θ‖∞ ≤ r, we have

gθ(I) ⊂ (M1 ∪M2)c (48)

since I ⊂ B(h,Cr). �

We now discuss some implications of our theorem. First
of all, we point out that all usual activation functions used in
deep learing are either differentiable with bounded deriva-
tive (linear unit, sigmoid, tanh, arctan, sin, inverse square
root unit, exponential linear unit, etc.), ReLU units, or leaky
ReLU units. Moreover, our assumptions also include ResNet
[3] architectures, as we can always represent a residual layer
sequentially with an additional linear layer to duplicate the
input, and a further additional linear layer to add the du-
plicated input to the output. Thus our assumptions on the
decoder’s architecture are consistent with real architectures.
Besides, if necessary, we can always remove the bounded
derivative assumption at the cost of bounding the latent space
(e.g. replacing Rp with [0, 1]p) and also imposing C1 acti-
vations, the derivative being then continuous and therefore
bounded on any compact.

Let (M1,M2) be a partition of the subset of plausible
shapes of the input space. We assume that d(M1,M2) > 0,
which is typically the case when M1 and M2 represent
two different kinds of shapes which lie on two separated
components. The first implication of the Theorem 1 comes
from the following remark. As it is true for all bounded
weights θ, it is especially valid for a specific θ with the
constant Cr = C‖θ‖∞ . The theorem then proves that it is
impossible to find a (continuous) interpolating path in the
latent space between any model fromM1 to any model in
M2, without generating implausible models, i.e. models that
do not belong toM1 orM2. In particular, Corollary 1 of our
theorem shows that any such path has a connected restriction
of length at least 2Cr on which any model is implausible.

The second implication is that on any interpolating path in
the latent space betweenM1 andM2, not only are some im-
plausible models synthesized, but these models are “widely”
implausible, in the sense that their latent vectors are far from
both g−1θ (M1) and g−1θ (M2), as the whole ball B(h,Cr)
generates implausible shapes.

The last and strongest implication we draw from our
theorem is that it is impossible to find a learning algorithm
with only one decoder (or generator) that would bringM1

and M2 arbitrary close in the latent space. Indeed, Cr



is a constant dependent only on the distance betweenM1

andM2, on r, and on the architecture but not its weights
as long as they are bounded by r. Thus, the only way to
reduce Cr is to increase r, i.e. to allow the weights to grow
larger in order to increase the derivatives of the network.
In other words, to bring closerM1 andM2 the decoder’s
weights should diverge. Thus, the Theorem 1 effectively
justifies our approach and the approach described in [5],
which, although different, both introduce several decoders
to learn a disconnected manifold.

1.2. Reassignment algorithm

We provide the pseudo code for our reassignment algo-
rithm in the Algorithm 1. This algorithm guarantees that
each autoencoder has at least n = bηNc inputs assigned to
it, thanks to the list V which stores the reassigned inputs.

Algorithm 1 Reassignment algorithm for disconnected man-
ifold learning

Input: The mini-batch x1, . . . , xN , the k autoencoders g1 ◦
f1, . . . , gk ◦ fk, the minimal ratio η of shapes assigned
to each autoencoder (η < 1

k ).
Output: The loss of the minibatch after reassignment.

Initialization
1: n← bηNc. . The minimal number of inputs assigned

to each autoencoder.
2: for j ∈ J1, NK do
3: dji ← dCH(xj , gi ◦ fi(xj)).
4: Lj ← mini∈J1,kK d

j
i .

5: end for
6: V ← []. . V is the list of already re-assigned inputs.

Reassignment
7: for i ∈ J1, kK do
8: for r ∈ J1, nK do . r is not used, it is just a counter.
9: a← arg minj∈J1,NK\V d

j
i − Lj .

10: La ← dai .
11: V ← V + [a]. . + denotes concatenation here.
12: end for
13: end for
14: return 1

N

∑N
j=1 Lj .

2. Implementation details
2.1. Learning

Figure 1 presents the architecture used in our experiments.
All activation functions are ReLU except for the last fully
connected layer (before the “add” layer) which uses tanh.
We use batch normalization layers as introduced in [4]. The
global max pooling layer is the usual aggregation layer used
in PointNet-like architectures [7] to design an encoder acting
on point clouds, just like the convolution 1d layers are the

chairs cars planes
Original AtlasNet [2] 1.81 1.75 0.98
Our AtlasNet 1.63 1.23 0.73

Table 1: Chamfer loss over the test set (×103).

usual fully connected layers which are shared among all the
points of their input in PointNet (i.e. shared accross their
first dimension). The local max pooling layer is the graph
layer used in [9] to locally aggregate features around the
neighborhood of each point. All models and baselines use
this architecture, except for AtlasNet. The only difference
between AtlasNet and this architecture is that AtlasNet does
not use the input covariances, or the local max pooling layers.
For FN/AN and AtasNet, the template coordinates are taken
from a unit sphere.

The dataset is centered, normalized into a unit sphere2,
and uniformly resampled by ray shooting the meshes, follow-
ing the pre-processing step described in [8]. The resulting
point clouds are uniformly subsampled to get 2500 points
by model. In our learning experiments, we set η = 0.25.
The training is done by mini-batch gradient descent us-
ing the ADAM optimizer [6], with parameters β1 = 0.9,
β2 = 0.999, ε = 10−8. We run 800 epochs each time,
which we have checked to be enough to reach convergence.
We use a learning rate of 10−3 for the 700 first epochs, and
10−4 for the 100 last.

As AtlasNet [2] provides test errors on ShapeNet [1],
with the same Chamfer loss that we use for training, we can
check that our AtlasNet implementation is valid. The Table 1
compares the Chamfer loss between our own implementation
of AtlasNet and the losses reported by AtlasNet original
publication, using the sphere topology as input to the decoder.
It validates our implementation as we get even better results
than theirs, mainly because they train all ShapeNet categories
together, while we train each category separately.

2.2. Editing

To compute the deformation field δ for the handles-based
editing interface, we use the inverse quadric RBF f(r) =
1/(1 + ar2) with a = 4. In the 3D editing optimization,
we use as threshold ρ = 0.2 for the energy E1

c , and for the
energy Ep we use 50 components in the Gaussian mixture
model. The result of the optimization is not very sensitive to
λs and λp, as long as Ec, Es and Ep are in the same range.
To compute σ in the final retargeting, we use a Gaussian
kernel K(r) = e−r

2/(2h) with h = 0.25 for chairs and
planes, and h = 0.15 for cars to better highlight the large
deformations that we apply. We also keep the wheels of the
edited cars fixed, by applying the retargeting only to the cars’
bodies.

2The model is rescaled such that the furthest point to the origin lies onto
the unit sphere.
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Figure 1: Base 3D autoencoder architecture used in our experiments.

3. Additional results

3.1. Learning

Figures 2, 3 and 4 provide additional visual reconstruc-
tion results to illustrate the superior topology of the models
reconstructed by our learning model DiscoNet (k = 2). The
colors are transferred from the unit sphere for FN/AN and
from our pre-learned templates for DiscoNet to highlight the
topology and the correspondences between the vertices.
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Figure 2: Reconstruction results on chairs.
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Figure 3: Reconstruction results on cars.
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Figure 4: Reconstruction results on planes.

3.2. Editing

Figures 5 and 6 show additional editing results with our
pipeline, using either the 3D handles or the 2D sketch inter-
face. Figure 7 shows that our editing system can also be used
sequentially, by iteratively optimizing the last edited model
(starting from the last optimized latent vector) for each new
editing.

Finally, Figure 8 presents some failure cases of our edit-
ing system, limited by our simple sketch to vertices corre-
spondence scheme. This could probably be solved using
more advanced matching algorithms, based on the arc length
parameterizations of the contour and the sketch for example.

Original 
model

Edited 
model

Optimized 
synthetic model

Optimized 
edited model

Figure 5: Results of handles-based editing.

Edited 
model

Optimized 
synthetic model

Optimized 
edited model

Figure 6: Results of sketch-based editing.



First editing

Second editing

Edited model Optimized 
synthetic model

Optimized 
edited model

Figure 7: Result on a chair of two sequential editings.

Edited 
model

Optimized 
edited model

Optimized 
synthetic model

Figure 8: Illustration of two failures cases in our editing pipeline,
due to a limitation in our simple sketch/contour correspondence
scheme.
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