
Online Model Distillation for Efficient Video Inference
(Supplementary)

1. Qualitative Comparison Videos

We include one minute video clips (videos.zip) from
a selection of video streams in the LVS dataset, with
Mask R-CNN and JITNet 0.9 predictions overlaid on the
left and right respectively. All videos are subsampled by
4× temporally to reduce file size. Full videos can be
found at this anonymous YouTube channel: https://www.
youtube.com/channel/UC-T0FerolHcDDKs2BZQEmrQ

2. Online Distillation Ablation Study

Our online distillation approach has several parameters
(maximum updates (umax), minimum stride (δmin), learn-
ing rate and network size) that enable different trade-offs
between accuacy and efficiency. Here, we study the impact
of these parameters on the accuracy vs. efficiency trade-off
on a subset of six video streams (which are representative of
different scenarios) in the LVS dataset. We also evaluate the
impact of skip connections and resolution on accuracy and
efficiency. Table 1 compares the accuracy, speedup (relative
to running the teacher on every frame), fraction of frames
used for supervision, and number of FLOPS (floating point
operations) for both training and inference on each of the
variants. The baseline is JITNet 0.8, the online distillation
algorithm run with an accuracy threshold of 0.8. For JITNet
0.8, the maximum updates, minimum stride, and learning
rate were set to 8, 8 and 0.01 respectively. We vary one pa-
rameter at a time, and each column in the table corresponds
to a variation of the JITNet 0.8 baseline.

Learning rate: High learning rates allow for faster
adaptation. Therefore, we chose the highest learning rate
at which online training is stable for all our experiments.
As one can see in Table 1, a lower learning rate of 0.001
reduces both accuracy and speedup. Increasing the learning
rate to 0.1 destabilizes training and yields low accuracy.

Max updates and stride: The number of updates
needed on a single frame depends on how much the model
can learn from one frame, and how useful that information
is in the immediate future. Increasing the number of up-
dates leads to overfitting, reducing accuracy while increas-
ing speedup, and reducing the number of teacher samples
used. This suggests some room for improvement in choos-

ing how many updates to perform on a given frame over
our simple accuracy-based heuristic. As one would expect,
increasing and decreasing minimum stride increase and de-
crease accuracy respectively.

JITNet capacity: Intuitively, as the capacity of the stu-
dent architecture is increased, the student model should re-
quire less help from the teacher. We verify this by varying
the width of JITNet (the number of channels in each layer),
and observe that a smaller capacity network (width 0.5) re-
quires more supervision from the teacher, and also results in
a significant drop in accuracy. Doubling JITNet width im-
proves overall accuracy and reduces the number of teacher
samples used. However, overall speedup is lower than the
baseline due to the increased inference and training cost of
the wider JITNet model.

JITNet resolution: High resolution is necessary for
maintaining high accuracy on video streams that have small
objects. When the input resolution to JITNet is halved
(scale 0.5), there is an overall increase in the number of
frames on which teacher supervision is used, and also a drop
in accuracy relative to the baseline. However, reducing the
resolution to 75% (scale 0.75) retains high accuracy while
being slightly faster than the baseline. This suggests the
possibility of varying resolution based on the contents in a
video stream, which could be explored in the future.

Skip connections: We added encoder-to-decoder skip
connections to facilitate better gradient propagation and
make JITNet suitable for fast online adaptation. We eval-
uate the impact of the skip connections by removing them
(Table 1, No Skip). JITNet without skip connections re-
quires more teacher samples and adaptation, reducing both
accuracy and speedup relative to the baseline.

Overall, the online distillation algorithm is reasonably
robust to different parameter settings and provides a range
of options for accuracy vs. efficiency.

3. MobileNet Student
We compare JITNet with a popular efficiency-oriented

MobileNetV2 [5, 6] architecture in the context of online dis-
tillation. Table 1 shows online accuracy and speedup of on-
line distillation when the MobileNetV2 architecture is used
as the student. The two MobileNetV2 variants produce out-
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JITNet MobileNet

Baseline Max Updates Learning Rate Min Stride Width Skip Scale Output Stride

4 16 0.001 0.1 4 16 0.5 2.0 No 0.5 0.75 8 16

Accuracy (mIoU) 78.7 77.3 78.0 75.6 16.7 79.8 76.1 62.0 80.3 76.0 75.9 78.1 75.3 74.6

Speed Up 19.2× 17.2× 22.8× 14.3× 7.3× 17.1× 22.9× 14.9× 12.4× 12.4× 20.0× 22.0× 9.5× 16.8×

Teacher Samples 5.0% 6.1% 3.7% 6.7% 10.6% 7.7% 3.3% 5.1% 4.2% 6.3% 6.2% 5.3% 5.0% 5.8%

Inference (FLOPS) 15.2 11.8 47.9 14.3 4.6 10.3 60.3 18.3

Training (FLOPS) 42.0 31.8 140.4 39.4 8.6 22.4 176.1 53.0

Table 1: Comparison of different input parameter settings to the online distillation algorithm. The algorithm is robust to all parameter
changes except very high learning rates, where online training becomes unstable.

Method JM JR JD FM FR FD
JITNet A 0.642 0.731 0.238 0.680 0.761 0.235
JITNet B 0.796 0.927 0.018 0.798 0.904 0.060
JITNet C 0.811 0.924 -0.004 0.831 0.913 0.004
OSVOS-S [3] 0.856 0.968 0.055 0.875 0.959 0.082
OSVOS [1] 0.798 0.936 0.149 0.806 0.926 0.150

Table 2: Accuracy comparison of different methods using the JIT-
Net architecture and recent methods for semi-supervised video ob-
ject segmentation on the DAVIS 2016 benchmark.

puts at 1/8th and 1/16th of the input resolution. As one can
see, the higher resolution variant of the MobileNetV2 archi-
tecture is significantly slower and has lower accuracy than
the JITNet baseline. Even the lower resolution (scale 0.75)
version of JITNet has higher accuracy and speedup com-
pared to the MobileNetV2 student. These results demon-
strate that off-the-shelf models can be used in our online dis-
tillation framework. However, JITNet provides a better ac-
curacy vs. efficiency spectrum compared to MobileNetV2
for online distillation, since it is designed for fast adapta-
tion. Note that we measure FLOPS, which is a platform-
agnostic metric, to ensure fair comparison, since wall-clock
time (MobileNetV2 takes 38ms for inference compared to
7ms for JITNet on a Nvidia V100 GPU) depends on various
factors, including target platform, underlying libraries, and
specific implementation.

4. DAVIS Evaluation
Online distillation as a technique can be used to mimic

an accurate teacher model with a compact model, improv-
ing runtime efficiency. The main focus of this work is to
demonstrate the viability of the online distillation technique
for semantic segmentation on streams captured from typical
use case scenarios. In this section, we show preliminary re-
sults on the viability of online distillation combined with the
JITNet architecture for accelerating semi-supervised video
object segmentation methods. Specifically, we evaluate how
the JITNet architecture can be combined with state-of-the-

art methods such as OSVOS-S [3].
We evaluate three different configurations of JITNet at

varying levels of supervision. In configuration A, we train
JITNet on only the first ground truth frame of each se-
quence, and evaluate JITNet over the rest of the frames in
the sequence without any additional supervision (the stan-
dard video object segmentation task). On many sequences
in DAVIS, object appearance changes significantly and re-
quires prior knowledge of the object shape. Note that JIT-
Net is a very low capacity model designed for online train-
ing, and cannot encode such priors. Configuration A is not
an online distillation scenario, but even with its low capac-
ity, the JITNet architecture trained on just the first frame
yields reasonable results.

Recent methods such as OSVOS-S [3] leverage instance
segmentation models such as Mask R-CNN for providing
priors on object shape every frame. We take a similar ap-
proach in configuration B, where the goal is to mimic the
expensive OSVOS-S model. We train JITNet on the first
ground truth frame, then adapt using segmentation predic-
tions from OSVOS-S [3] every 16 frames. Note that in con-
figuration B, our combined approach does not use additional
ground truth, since OSVOS-S predictions are made using
only the first ground truth frame. Finally, in configuration
C, we train on the first ground truth frame, and adapt on the
ground truth mask every 16 frames. This gives an idea of
how the quality of the teacher effects online distillation.

We use the validation set of the DAVIS 2016 [4] dataset
for our evaluation. The dataset contains 50 video sequences
of 3455 frames total, each labeled with pixel-accurate seg-
mentation masks for a single foreground object. We eval-
uate using the main DAVIS metrics: region similarity J
and contour accuracy F, with precision, recall, and decay
over time for both. We present metrics over the entire
DAVIS 2016 validation set for all three JITNet configura-
tions, alongside a subset of state-of-the-art video object seg-
mentation approaches. In all configurations, we start with
JITNet pre-trained on YouTube-VOS [8], with max updates
per frame set to 500, accuracy threshold set to 0.95, and use
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standard data augmentation (flipping, random noise, blur-
ring, rotation). JITNet A performs similarly to OFL [7], a
flow-based approach for video object segmentation, while
JITNet B, using OSVOS-S predictions, performs compara-
bly to OSVOS, with significantly lower runtime cost. Fi-
nally, JITNet C, which uses ground truth masks for adap-
tation, performs comparably to only using OSVOS-S pre-
dictions. This suggests that even slightly noisy supervision
suffices for online distillation. Overall, these results are en-
couraging with regards to further work into exploring archi-
tectures well suited for online training.

5. Offline Training Details
JITNet COCO pre-training: All JITNet models used in
our experiments are pre-trained on the COCO dataset. We
convert the COCO instance mask labels into semantic seg-
mentation labels by combining all the instance masks of
each class for each image. We train the model on all 80
classes. The model is trained on 4 GPUs with batch size 24
(6 per GPU) using an Adam optimizer with a starting learn-
ing rate of 0.1 and a step decay schedule (reduces learning
rate to 1/10th of current rate every 10 epochs) for 30 epochs.

JITNet offline oracle training: All offline oracle mod-
els are initialized using the COCO pre-trained model and
trained on the specialized dataset for each video using the
same training setup as COCO, i.e., same number of GPUs,
batch size, optimizer, and learning rate schedule. However,
each of the specialized datasets is about 6000 images, 20×
smaller than the COCO dataset.

6. Standalone Semantic Segmentation
The JITNet architecture is specifically designed with low

capacity so that it can support both fast training and infer-
ence. To understand the accuracy vs. efficiency trade-off
relative to other architectures such as MobileNetV2 [5, 6],
we trained a JITNet model with twice the number of chan-
nels and encoder/decoder blocks than the one used in the
paper. This modified architecture is 1.5× faster than the se-
mantic segmentation architecture based on MobileNetV2.
The larger JITNet gives a mean IoU of 67.34 on the
cityscapes [2] validation set and compares favorably with
the 70.71 mean IoU of the MobileNetV2 based model [6].
We started with the larger JITNet architecture in the online
distillation experiments, but lowered the capacity even fur-
ther, with half the number of channels and encoder/decoder
blocks, since it provided a better cost vs. accuracy trade-off
for online distillation.

7. Additional Results
Table 3 gives the accuracy and performance of online

distillation for each individual video stream we used in our

evaluation, using JITNet at three different accuracy thresh-
olds: JITNet 0.7, 0.8, and 0.9. Figure 1 shows the mean
IoU of JITNet 0.8 and the offline oracle across time for ad-
ditional videos streams. The top plot displays the mean IoU
of both methods (data points are averages over 30 second
time intervals). The bottom plot displays the number of JIT-
Net model updates in each interval. Images above the plots
are representative frames from time intervals requiring the
most JITNet updates.
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Offline Flow Online Distillation

Video Oracle Slow (2.2×) Fast (3.2×) JITNet 0.7 JITNet 0.8 JITNet 0.9
(20%) (12.5%) ( 6.2%)

Overall 80.3 76.6 65.2 75.5 (17.4×, 3.2%) 78.6 (13.5×, 4.7%) 82.5 (×7.5, 8.4%)

Category Averages

Sports (Fixed) 87.5 81.2 71.0 80.8(36.7×, 1.6%) 82.8(33.3×, 1.8%) 87.6(16.1×, 5.1%)

Sports (Moving) 82.2 72.6 59.8 76.0(31.4×, 2.1%) 79.3(22.2×, 3.6%) 84.1(9.3×, 9.1%)

Sports (Ego) 72.3 69.4 55.1 65.0(21.1×, 3.7%) 70.2(14.1×, 6.0%) 75.0(7.7×, 10.4%)

Animals 89.0 83.2 73.4 82.9(33.1×, 1.9%) 84.3(30.1×, 2.2%) 87.6(22.0×, 4.4%)

Traffic 82.3 82.6 74.0 79.1(18.4×, 4.6%) 82.1(13.3×, 7.1%) 84.3(8.4×, 10.1%)

Driving/Walking 50.6 69.3 55.9 59.6(9.0×, 8.6%) 63.9(7.6×, 10.5%) 66.6(6.7×, 11.9%)

Individual Video Streams

Badminton (P) 83.1 83.2 72.9 77.1(36.7×, 1.6%) 80.0(32.6×, 1.8%) 87.3(9.8×, 7.9%)

Squash (P) 88.4 70.0 56.5 80.9(37.0×, 1.6%) 82.5(35.7×, 1.7%) 86.0(21.3×, 3.2%)

Table Tennis (P) 89.4 84.8 75.4 81.5(37.2×, 1.6%) 83.5(36.7×, 1.6%) 88.3(20.3×, 3.4%)

Softball (P) 89.2 86.7 79.2 83.8(36.0×, 1.7%) 85.3(28.2×, 2.3%) 88.8(13.1×, 5.7%)

Hockey (P) 81.9 68.0 54.5 75.7(31.5×, 2.0%) 79.0(18.5×, 3.8%) 84.2(7.3×, 10.8%)

Soccer (P) 80.0 68.3 54.6 75.2(33.2×, 1.8%) 79.0(18.9×, 3.7%) 83.7(7.3×, 10.8%)

Tennis (P) 87.3 80.1 67.5 81.1(35.9×, 1.6%) 82.5(32.2×, 1.9%) 87.2(15.4×, 4.8%)

Volleyball (P) 82.3 82.9 73.0 76.4(34.3×, 1.7%) 80.3(21.1×, 3.2%) 85.0(8.4×, 9.2%)

Ice Hockey (P) 79.0 72.8 60.2 72.0(30.8×, 2.0%) 76.3(19.1×, 3.7%) 81.8(7.3×, 10.7%)

Kabaddi (P) 88.2 78.9 66.7 83.8(37.2×, 1.6%) 84.5(35.6×, 1.7%) 87.9(12.1×, 6.3%)

Figure Skating (P) 84.3 54.8 37.9 72.3(24.3×, 2.8%) 76.0(17.6×, 4.1%) 83.5(8.3×, 9.4%)

Drone (P) 74.5 70.5 58.5 70.8(23.7×, 2.8%) 76.6(10.7×, 7.2%) 79.9(6.3×, 12.5%)

Elephant (E) 93.3 91.0 85.3 92.7(37.1×, 1.6%) 92.8(37.2×, 1.6%) 93.6(36.6×, 1.6%)

Birds (B) 92.0 80.0 68.0 85.3(37.0×, 1.6%) 85.7(36.8×, 1.6%) 87.9(33.7×, 1.8%)

Giraffe (P,G) 85.5 79.6 69.2 82.8(32.1×, 1.9%) 84.1(26.4×, 2.5%) 87.6(11.4×, 6.6%)

Dog (P,D,C) 86.1 80.4 71.1 78.4(29.3×, 2.2%) 81.2(21.4×, 3.2%) 86.5(9.2×, 8.4%)

Horse (P,H) 87.9 84.9 73.4 75.3(30.1×, 2.1%) 77.7(28.6×, 2.2%) 82.7(19.2×, 3.6%)

Ego Ice Hockey (P) 68.8 56.7 39.6 56.3(31.1×, 2.0%) 59.3(20.1×, 3.4%) 67.0(7.8×, 10.0%)

Ego Basketball (P,C) 68.4 70.5 56.2 59.8(13.1×, 5.7%) 67.9(9.9×, 7.8%) 70.1(7.4×, 10.7%)

Ego Dodgeball (P) 82.1 75.5 60.4 74.3(26.6×, 2.5%) 79.5(20.3×, 3.4%) 84.2(9.5×, 8.2%)

Ego Soccer (P) 71.3 72.9 58.2 66.3(14.8×, 5.0%) 72.1(9.5×, 8.1%) 78.3(7.2×, 10.9%)

Biking (P,B) 70.7 71.6 61.3 68.2(19.8×, 3.5%) 72.3(10.4×, 7.3%) 75.3(6.4×, 12.4%)

Streetcam1 (P,C) 86.0 76.8 65.3 79.1(25.2×, 2.5%) 82.1(19.1×, 3.6%) 85.5(13.8×, 5.2%)

Streetcam2 (P,C) 82.2 82.1 72.9 76.1(15.9×, 4.6%) 79.7(10.1×, 7.6%) 83.7(6.5×, 12.2%)

Jackson Hole (P,C) 76.5 77.9 67.9 75.7(12.8×, 5.9%) 78.0(9.4×, 8.3%) 79.2(7.4×, 10.7%)

Murphys (P,C,B) 91.9 94.1 91.2 88.0(32.1×, 1.9%) 89.8(26.0×, 2.5%) 92.9(9.9×, 7.8%)

Samui Street (P,C,B) 80.6 83.8 76.5 78.8(13.6×, 5.5%) 82.6(8.2×, 9.5%) 83.7(6.5×, 12.2%)

Toomer (P,C) 76.6 81.1 70.4 76.9(10.7×, 7.2%) 80.3(7.0×, 11.3%) 80.5(6.4×, 12.4%)

Driving (P,C,B) 51.1 72.2 59.7 63.8(8.9×, 8.8%) 68.2(6.9×, 11.5%) 66.7(6.4×, 12.4%)

Walking (P,C,B) 50.2 66.4 52.1 55.4(9.1×, 8.5%) 59.6(8.2×, 9.5%) 66.4(7.0×, 11.3%)

Table 3: Comparison of accuracy (mean IoU over all the classes excluding background), runtime speedup relative to MRCNN (where
applicable), and the fraction of frames where MRCNN is run. Classes present in each video are denoted by letters (A - Auto, Bi -
Bird, Bk - Bike, D - Dog, E - Elephant, G - Giraffe, H - Horse, P - Person). Overall, online distillation using JITNet provides a better
accuracy/efficiency tradeoff than baseline methods.
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Figure 1: Top graph: the accuracy of JITNet 0.8 and Offline Oracle relative to MRCNN. Bottom graph: the number of updates to JITNet
during online distillation. Plotted points are averages over a 30 second interval of the video. Images correspond to circled points in bottom
plot, and show times where JITNet required frequent training to maintain accuracy.
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