
A Dataset of Multi-Illumination
Images in the Wild

A. Crowd-sourced data annotation
For each scene, we include dense material labels, seg-

mented by crowd workers. These annotations are inspired
by the material annotations collected by Bell et al. [1],
whose publicly available source code forms the basis for
our data annotation system. Departing from Bell et al., we
strive to densely label each scene with at least 95% cover-
age. In comparison, the images published by Bell et al. have
an average coverage of 20%.

Annotations with above 95% coverage also set our
dataset apart from semantic segmentation datasets such as
Coco [3] and Pascal [2], which generally exhibit many un-
labeled background pixels. In particular, the Coco 2014
training set has an average pixel-level coverage of 29.6%,
while Pascal VOC2012 includes annotations for 25.5% of
the pixels.

In early crowd sourcing experiments, we found it diffi-
cult to achieve high annotation coverage using the polygon-
based segmentation user interface from Bell et al. [1], which
also forms the backbone of the Coco annotations [3]. While
segmentation using a single polyline is an effective solu-
tion for foreground objects without holes, encouraging a
thorough labeling of the background turned out more dif-
ficult. We found that background regions must frequently
be split into several polygons to avoid accidentally includ-
ing foreground objects. Further, we observed that labeling
both foreground and background would almost double the
work required, as each occluding contour must be traced
twice.

We overcome these limitations by segmenting objects in
order, from front to back. In a typical segmentation session,
a worker starts by labeling foreground objects that are not
occluded (i.e. objects closest to the camera). Once these oc-
cluding objects are labeled, the worker can “extract” them
from the image. As background polygons are automati-
cally masked by extracted foreground shapes, the worker
can then segment the “second layer” without worrying that
their newest polygon might overlap previously segmented
areas. Our front-to-back segmentation interface is efficient
since occluding contours only have to be traced once, back-
ground objects are segmented into a single contiguous poly-
gon, and the front-to-back logic ensures there are neither
gaps nor overlap between foreground and background an-
notations.

We found that crowd workers on Amazon Mechanical
Turk were able to reliably segment scenes in front-to-back
order after viewing a short tutorial video that introduces our

Not segmented More than 
one material

I can’t tell Split vote

Input [Bell et al. 2013] Crowd only Ties resolved

Figure 1. Obtaining full-image annotations using an unmodified
version of [1] is challenging (column 2). Our modified version of
their UI lets workers segment images front-to-back, which allows
background objects to be captured in a single contiguous shape
(column 3). In some cased (see wooden floor in bottom row),
crowd-sourced votes are split, which we resolve manually for the
final result (column 4).

user interface and demonstrates the semantics of front-to-
back ordering.

After the segmented shapes are submitted to our server,
we add them to a work queue where workers are asked to
choose the material for each segment. The choice of ma-
terial categories and annotation interface follows Bell et
al. [1]. Each shape is presented to five workers and ma-
terials are determined by a simple majority vote. In cases
where no material receives a majority, we resolve ties man-
ually. Figure 1 compares the segmentations obtained using
our technique with thouse obtained using the original user
interface.

B. Network architectures
Let Ck denote a Conv–ReLU layer with k 3× 3 kernels.

Pk is a k × k max-pooling operator, and Lk is a 1× 1 con-
volution with k linear outputs (no activation). Uk is a k× k
bilinear upsampling layer.

Illumination prediction Our fully convolutional illumi-
nation prediction network takes 256 × 256 color images
as input and produces 16 × 16 RGB light probe im-
ages (i.e. 768 output floats). Its architecture is given by:
C32P2C64P2C128P2C256P2C512P4DC512P4C512L768.

Relighting and white-balance Both the relighting and
white-balance application use a U-net with 7 downsampling
stages and take 3-channel images as input. The relighting



output is a color image (3 channels), but the white-balance
model produces only the chroma components (2 channels),
which are then combined with the input luminance. The
U-net encoder can be described as:

(C64)
2P2(C128)

2P2(C256)
2P2(C512)

2P2(C512)
2P2

(C512)
2P2(C512)

2P2(C512)
2.

And the decoder is given by:
U2(C64)

2U2(C128)
2U2(C256)

2U2(C512)
2U2

(C512)
2U2(C512)

2U2(C512)
2L2or3, with additive skip-

connections between matching resolutions.

References
[1] S. Bell, P. Upchurch, N. Snavely, and K. Bala. OpenSurfaces:

A richly annotated catalog of surface appearance. ACM SIG-
GRAPH, 2013. 1

[2] M. Everingham, L. Gool, C. K. Williams, J. Winn, and A. Zis-
serman. The pascal visual object classes (voc) challenge. Int.
J. Comput. Vision, 88(2):303–338, June 2010. 1

[3] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Gir-
shick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick. Microsoft COCO: common objects in context. CoRR,
abs/1405.0312, 2014. 1


