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1. Appendix A: Pairwise terms - Epair(l, d,m)

Smoothness term: This term ensures that depth labels vary
smoothly within a neighbourhood and is defined as:

Es(l, d) = λts
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es(lp, dp, lq, dq, dmax) =
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0, if lp = lq and dp, dq = U

dmax, otherwise

where, dsmax avoids over-penalising large discontinuities
for spatial smoothness and is set to 50 times the size of the
depth sampling step. dtmax ensures smoothness in time over
the temporal neighbourhood and is twice the value of dsmax
to allow large movement in the object.
Contrast term: This term is defined as:
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where µ (lp, lq) = 1 if (lp = lq) otherwise 0 and ϑp,q is
the euclidean distance between p and q. ‘Bilateral’ kernel
B forces pixels with similar colour and position to have
similar labels and the Gaussian kernel L enforces spatial
smoothness, with σα =

〈
‖B(p)−B(p)‖2

ϑ2
p,q

〉
and σβ control-

ling the scale of these kernels, where the operator 〈〉 denotes
the mean computed across the neighbourhoods ψS and ψT
for spatial and temporal contrast respectively.

2. Appendix B: Key-frame detection
As explained in the paper, key-frame detection is used to

improve the long term temporal coherence in the proposed

Figure 1. Illustration of 4D scene understanding which includes re-
construction, semantic instance segmentation and tracking in time.

Semantic Segment Instance 3D Motion
SCV [11] X X × × X
SCSR [7] X X × X ×
JSR [4] × X × X ×
Dv3+ [2] X X × × ×
MRCNN [5] X X X × ×
PSP [15] X X × × ×
CRF RNN [16] X X × × ×
Segnet [1] X X × × ×
RTSeg [9] X X × × ×
PRSM [12] × × × X X
LocalStereo [10] × × × X ×
SMVS [6] × × × X ×
DCflow [14] × × × × X
Deepflow [13] × × × × X
4DMatch [8] × × × × X
Proposed X X X X X
Table 1. Illustration of tasks performed by state-of-the-art methods
compared to the proposed method.

joint semantic instance segmentation and 4D reconstruc-
tion. The 3D meshes are aligned for frames in between two
key-frames Ki and Ki+1 and between key-frames NK to
obtain full 4D scene reconstruction for the sequence.



2.1. Key-frame similarity metric

Key-frame detection exploits sparse correspondence
(M c

i,j), pose (P ci,j), shape (Ici,j), semantic (Ici,j) and distance
(Dc

i,j) information across views Nv between frame i and j
for each object in view c. All the metrics are defined in
detail below for the key-frame metric:

KSi,j = 1− 1

5Nv

Nv∑
c=1

(M c
i,j + Lci,j +Dc

i,j + P ci,j + Ici,j)

2.1.1 Sparse correspondence Metric (M c
i,j)

This measures appearance similarity between frames for
each object, defined as the ratio of the number of sparse
temporal correspondences Q to the total number of features
R:

M c
i,j =

2Qci,j
Rci +Rcj

2.1.2 3D Pose Metric (P ci,j)

This metric measures the distance between the regularised
pose:

P ci,j =
‖Pi − Pj‖F

P cmax

where j > i and P cmax is the maximum change of pose be-
tween frames for view c. This term ensures that the distance
between poses between key-frames is limited.

2.1.3 Semantic Metric (Lci,j)

An affine warp [3] is used to align semantic regions to mea-
sure semantic similarity between two frames. The metric
is defined as the ratio of the number of pixels with similar
class label zci,j to the pixels in the segmented region yci,j :

Lci,j =
zci,j
yci,j

2.1.4 Distance Metric (Dc
i,j)

This metric measures the distance between frames:

Dc
i,j =

j − i
Dc
max

where j > i and Dc
max is the maximum number of frames

between key-frames for view c. This term ensures that the
distance between two key-frames does not exceed Dc

max.
This is set to 100 throughout this work.

Datasets Proposed without
key-frame detection Proposed

Handshake 0.60 0.51
Handstand 0.71 0.61
Juggler1 0.57 0.49
Juggler2 0.59 0.52
Magician 0.67 0.58
Meetup 0.72 0.63
Human3.6 0.78 0.68
WalkLF 0.51 0.44

Table 2. Silhouette overlap error for multi-view datasets for eval-
uation of long-term temporal coherence, where PK = Proposed
method without key-frame detection.

2.1.5 Shape Metric (Ici,j)

It is defined as the ratio of the intersection of the aligned
segmentation [3] (h) to the union of the area (a):

Ici,j =
hci,j
aci,j

It gives shape overlap between frames.

2.2. Ablation study without key-frame detection

The higher the number of key-frames the better the qual-
ity of alignment. However if no key-frames are detected for
a sequence, it will degrade the performance of 4D long-term
scene flow. To evaluate the effect of key-frame detection
we evaluate the performance of 4D scene flow for proposed
joint optimization with and without key-frames in Table 2.
The results show an≈ 15% improvement in scene flow with
key-frame detection.

3. Appendix C: Results and Evaluations

This section contains additional results along with the
original paper submission on 4D dynamic scene under-
standing (illustrated in Figure 1). We have added more
qualitative and quantitative results on the datasets and state-
of-the-art methods listed in the original manuscript. The
results of the proposed method are compared with 15 meth-
ods listed in Table 1. None of these state-of-the-art methods
exploit human pose information to refine the results.

3.1. Segmentation Comparison

Semantic segmentation comparison results against CRF
RNN [16], Segnet [1], PSP [15] are shown in Figure 2
on four datasets. Ground-truth segmentation comparison
is shown in Figure 3 against JSR [4] and SCSR [7]. The
red and green regions highlight the error, green regions are
present in segmentation but not ground-truth and red re-
gions are present in ground-truth but not the segmentation.



Figure 2. Semantic segmentation comparison against state-of-the-art methods. In the proposed method shades of pink depicts instances of
humans and shades of yellow depict instances of cars.

Figure 3. Ground-truth semantic segmentation comparison against
state-of-the-art methods JSR and SCSR.

Figure 4. Comparison of reconstruction obtained using state-of-
the-art methods against proposed method.

Frame-to-frame Keyframe-to-frame
Methods Mean S.D. Mean S.D.
Proposed 3.604 1.653 4.181 2.317
4DMatch 5.896 2.513 8.344 5.006
DCflow 6.085 3.314 16.673 8.55
Deepflow 7.525 4.179 18.115 9.052
PRSM 8.794 4.908 20.876 11.493

Table 3. Temporal coherence evaluation for Meetup dataset against
existing methods: S.D. is the standard deviation

3.2. Reconstruction evaluation

In addition to the qualitative reconstruction shown in the
paper, quantitative evaluation of the surface obtained using
state-of-the-art methods is shown in Figure 4. The recon-
structions shown in paper in Figure 7 for Handstand are
compared against the proposed method and the errors are
color coded, with red showing the maximum error.

3.3. Motion evaluation

We evaluate the temporal coherence across the Meetup
sequence, by evaluating the variation in appearance for each
scene point between frames and between key-frames and
frames for state-of-the-art methods. The metric is defined
as:

√
∆r2+∆g2+∆b2

3 , where ∆ is the difference operator.
Evaluation shown in Table 3 against state-of-the-art meth-
ods demonstrates the stability of long term temporal track-
ing for proposed method (the lower the error the better).



Dataset PRSM [14] JSR [4] SCSR [7] Proposed
Magician 342 s 608 s 362 s 353 s
Rachel 397 s 582 s 379 s 362 s
Handstand 348 s 566 s 353 s 325 s
Juggler2 413 s 621 s 405 s 421 s
MagicianLF 659 s 1227 s 622 s 611 s

Table 4. Comparison of computational efficiency for a few dy-
namic sequences against state-of-the-art methods (time in sec-
onds)

3.4. Computation time comparison
Computation times for the proposed approach vs other

methods that perform joint estimation are presented in Ta-
ble 4. The proposed approach to reconstruct temporally
coherent 4D models is comparable in computation time to
per-frame multiple view reconstruction and gives a ∼50%
reduction in computation cost compared to previous joint
segmentation and reconstruction approaches using a known
background. This efficiency is achieved through improved
per-frame initialisation based on temporal propagation and
the introduction of the geodesic star constraint in joint opti-
misation.
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