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What are in this summary?

Motivations

High-level ideas of our architecture
Quantitative results summaries on THUMOS14
a. Oursvs STPN

b. Ours vs weakly-supervised methods

c. Ours vs fully-supervised methods
Micro-videos as supplement training data
Visualizations

a. Highly-confident detected action instances
b. Failure modes.



Action localization + Weak supervision

“This video contains Gymnastics action.”

Problem: find the temporal locations of the action within an untrimmed video using
only video-level labels.

This formulation is attractive because precise boundaries are difficult to obtain.



Gymnastics

Full supervision - exact boundaries are known

Background modeling is straightforward



“This video contains Gymnastics action.”

Weak supervision - boundaries are unknown

Background frames are often unmodeled.

In this paper, we show that models which explicitly
accounts for background frames are substantially better.



Attention is key ingredient.
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Background-awareness loss
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Top-down attentional cues from T-CAM
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Foreground-Background Clustering Loss

M e Unsupervised loss

e Encourages foreground and
background pooled features
to be distinct.




mAP@IloU - THUMOS14
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Compared with weakly supervised SoTA
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We outperforms state-of-the-art for
weakly supervised action
localization.



Compared with fully supervised SoTA
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e Higher loUs requires more accurate
action boundary decisions.
o which is difficult to do without
actual boundary supervision.
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Micro-videos as supplement training data

#hammerthrow #baseballpitch #basketballdunk #javelinthrow

At the first glance, ideal source for weakly-superivsed training data.



Micro-videos as supplement training data

#hammerthrow #baseballpitch #basketballdunk #javelinthrow

Would adding microvideos improve localization performance?



With Microvideos
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The addition of microvideos:
o helps improve significantly at
lower loUs
o Better recognize the action
instance.
It doesn’t help with refining the
boundaries of action instances
o which is needed for better
performance on higher loUs.



High-Confident Detected Instances

BaseballPitch
BasetballDunk
Billiards

Philippine Nows




High-Confident Detected Instances

CliffDiving

GolfSwing

HammerThrow




Failure Modes (1) - Mini-action composition
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Detections

Clean Background Jerk

e ‘CleanAndJerk’ is composed of two mini-actions, ‘Clean’ and ‘Jerk’.
e The athlete often pauses in between, resembling background frames.
e Our model over-segments this single instance into two separate instances.



Failure Modes (2) - Quickly Repeated actions
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Detections

e Each “TennisSwing’ instance is followed quickly by another “TennisSwing’ instance.
e There are little ‘background’ in between these swings.
e Our model often outputs one large detection containing these instances.



Failure Modes (3) - Human-agreed Boundaries
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e ‘BasketballDunk’ action instances consists of
o Run to the basket -> Jump -> Dunk the ball.
e Our model outputs the whole sequence as ‘BasketballDunk’ (left).
e Groundtruth segments only considers the last part as foreground (right).
e Intersection-Over-Union (loU) < 10%
o considered false positive.



Thanks!

Happy Reviewings :D!



