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A. Qualitative analysis for UT-Zappos Shoes

Fig. 6 in the main manuscript visualizes the qualitative
trends in PCA embeddings of the learnt LSN embeddings
for Zappos-Human shoes. We now adopt a different modus
operandi for investigating the learnt latent embeddings. We
project each 16-D latent embedding in the learnt LSN model
to two dimensions and visually inspect these embeddings
in an effort to uncover the low-level features that may have
been learnt in the subspaces. Fig. 3 shows the results of this
qualitative experiment.

B. Experimental setup details

Below, we describe the datasets used in our study and the
implementation details for training the networks.

B.1. UT-Zappos-50k shoes dataset

Yu and Grauman [9] introduced the UT Zappos-50k
Shoes Dataset, consisting of 50,025 shoe images along with
pairwise human preferences - perceived comfort, visual
open-ness, visual pointy-ness, and perceived sporty-
ness. We refer to this triplet comparison data as Zappos-
Human. Fig. 4a in the main manuscript illustrates the gen-
eral nature of the attributes. Additionally, UT-Zappos Shoes
also consists of meta-data labels which have been treated
as attribute labels in the study conducted by Veit et al. [8].
The attributes are type, gender, heel-height, and
closing-mechanism. We refer to this triplet similarity
comparison data as Zappos-Meta.

Zappos-Human triplets: UT Zappos-50k provides pair-
wise annotations of similar and dissimilar shoes for four
fine-grained attributes. These pairwise human annotated la-
bels only provide annotations for a few hundred shoes each.
Whittle Search [4] uses these similarity labels to learn lin-
ear rank-SVMs [2] to generate per-attributed ranked lists.
We follow this strategy to obtain scores for the per-attribute
linear SVMs to mine triplets for each attribute.

Zappos-Meta triplets: We simply use the triplets re-
leased by Veit et al. [8] at link.
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Figure 1: Samples from attributed ranked lists generated
using rank-SVMs, as described in [4]. We observe that the
ranked lists are noisy and may not strictly correspond to the
attributes in the dataset.

We note that the attributes are used solely for generat-
ing triplets and are not available to our learning method
during training. We perform all analysis on human-labeled
attributes since this data closely follows the real-world sce-
nario of obtaining weak supervision from the web. The noisy
nature of the rank-SVM generated similarity scores parallels
the noise observed in webly obtained data (see Figure 1).

B.2. Celeb-A faces dataset

The Celeb-A dataset [6] contains 202,599 face im-
ages labeled with 40 binary visual attributes. Fig. 2b
illustrates the general nature of a few of these attributes.
We select eight visual attributes for ablative analysis -
Eyeglasses, Male, Smiling, Young, Attractive,
Wearing_Lipstick, 5_o_Clock_Shadow, and
Bags_Under_Eyes.
Triplets: The Celeb-A dataset, unlike the UT-Zappos-50k
dataset, is exhaustively labeled with attributes. The dense
labels allow us to mine triplets based on the presence or
absence of attributes in the images.

B.3. Methods

We now describe in detail how we implement the various
methods in our quantitative analysis.
Singular Similarity Networks (SSN): SSN is a Resnet-18
network pre-trained on ImageNet [7] with a single embed-
ding for satisfying all notions of similarity. The UT-Zappos
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Figure 2: Mean face images for all 40 attributes in Celeb-A Faces. We observe that a number of the attributes are correlated.
For example, Goatee and Mustache are correlated. Surprisingly, Male and Big-Nose are also visually correlated!

Shoe images are small (resized to 112× 112) and (following
Veit et al. [8]) we chop off the Resnet-18 network after
the last max-pooling layer to accommodate the small shoe
images. The Celeb-A Faces images are much larger (resized
to 224 × 224) and all experiments are performed using
the standard Resnet-18 network. For all experiments, the
smallest possible embedding which does not suffer from
overfitting is used to report Supervised-Eval performance.
All experiment, except two, utilize a 16-D embedding. The
Celeb-A Faces experiment with 8 attributes (Sec. 5.3.2) uti-
lizes a 32-D embedding, and the Celeb-A Faces experiment
with all 40 attributes (Sec. 5.4.2) utilizes a 128-D embedding.

Multi-View Triplet Embeddings (MVTE): Amidi and
Ukkonen [1] implement their learning algorithm by learning
linear classifiers over fixed representations based on Fourier
descriptors and color histograms. We provide the MVTE
algorithm with better feature representations via Resnet-18
features trained on ImageNet [7]. Thus, our MVTE
implementation benefits from better feature representations,
while remaining faithful to the original proposed learning
algorithm.

Latent Similarity Networks (LSN): The proposed LSNs
follow the same network architecture as SSN, apart from
learning multiple linear subspace projections on the singular

embedding which forms the ultimate SSN layer. LSNs
are end-to-end trained using an adapted form of stochastic
MCL [5]. We note that the MVTE and LSN methods are
identical in terms of network architecture and differ in two
major ways: (1) LSNs are end-to-end trained while MVTE
learns linear classifiers over fixed Resnet-18 features learnt
on ImageNet [7], and (2) the LSN learning algorithm relies
on hard label assignment for each triplet sample, while
MVTE relies on soft label assignment.

Conditional Similarity Networks (CSN): The fully super-
vised CSNs [8] follow the same network architecture as
MVTE and LSN. CSNs benefit from the added supervision
of learning from each triplet sample conditioned on knowing
the underlying latent attribute. We use the implementation
provided by Veit et al. [8] for reporting the quantitative per-
formance for CSNs.

B.4. Implementation details

The proposed Latent Similarity Network architecture con-
sists of a Resnet-18 [3] encoder pre-trained on Imagenet [7].
Following [8], we resize UT Zappos-50k images to 112×112
and remove the final max-pool layer in the encoder to ac-
commodate the smaller image size. Celeb-A images are
resized to 224 × 224 to be loaded into the encoder. A fi-
nal fully-connected layer is added to the encoder, which
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Figure 3: Qualitative Analysis of 2D projections of learnt embeddings for the UT Zappos-50k Shoes dataset: (a) A subset of
the comfort attribute subspace learns to distinguish between colors: it is possible that humans perceive colorful shoes to be
more comfortable, (b) A subset of the open attributes learn to reason about brightness of shoes: it is possible that humans
find bright shoes to be more open, (c) A set of dimensions in the pointy attribute subspace embedding reasons about red
versus blue colors, probably due to the fact that a number of pointy shoes in the dataset are red stilettos, and (d) A subset of
the sporty attribute embeddings learn to reasob about the shade of the color of the shoe.

serves as the universal embedding for the networks used in
the study. All experiments are performed using a universal
embedding dimension of 16. LSNs also include a linear
subspaces which are learnt on the universal embedding. We
learn the linear subspaces as 16-dimensional projections of
the universal embedding, as experiments with 32 or 48 or
64-dimensional projections provided similar performance.
The subspaces are initialized from a normal distribution and
learned in an end-to-end fashion. The models are trained

using Stochastic Gradient Descent with an initial learning
rate of 5−6. The loss hyperparameters penalizing the mag-
nitudes of the universal embedding and the linear subspace
embeddings are λ1 = 5−3 and λ2 = 5−4, respectively. Each
minibatch is uniformly sampled from the list of triplets. We
train each model for 40 epochs and perform early stopping
on the validation set. We implemented Multi-view Triplet
Embeddings (MVTE) [1] as a competitive baseline for our
proposed Latent Similarity Networks (LSN) by learning a
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Figure 4: Embedding visualization for discovered latent
attributes in the Celeb-A Faces dataset: (a) The discovered
attribute corresponds to the eyeglasses attribute. Our
method succeeds in recognizing eyeglasses across age, race,
gender. (b) The discovered smile attribute. Our method
learns to discover smiles across age, pose, gender.

linear classifier over a fixed Resnet-18 encoder pre-trained
on Imagenet [7].

Fig. 3a shows how the latent embedding space corre-
sponding to comfort: it is possible that humans perceive
colorful shoes to be more comfortable. Fig. 3b illustrates
how the latent embedding space corresponding to open
learns to reason about brightness of shoes. Fig. 3c shows
a projection of the latent embedding space corresponding
to pointy which shows a continuous progression from
red to blue colored shoes; we note that a number of pointy
shoes in the dataset are red stilettos. Fig. 3d visualizes a
lower-dimensional projection of the sporty latent attribute
embedding space that learns to reason about the shade of the
color of shoes.

C. Qualitative analysis for UT Zappos-50k

Fig. 6 in the main manuscript visualizes the qualitative
trends in PCA embeddings of the learnt LSN embeddings
for Zappos-Human shoes. We now adopt a different modus
operandi for investigating the learnt subspace embeddings.
We randomly choose two dimensions for each 16-D embed-

ding in the LSN model, and visually inspect these embed-
dings in an effort to uncover the low-level features that may
have been learnt in the subspaces. Fig. 3 shows the results
of this qualitative experiment.

D. Qualitative analysis for Celeb-A Faces
Fig. 5 in the main manuscript visualizes the qualitative

trends in PCA embeddings of the learnt LSN embeddings for
two attributes in Celeb-A Faces. Fig. 4 presents additional
qualitative analysis of the PCA embeddings of the learnt
latent spaces for other attributes in the Celeb-A Faces dataset.

Fig. 4a illustrates a 2D PCA visualization of the learnt
latent embedding space corresponding to the eyeglasses
attribute. Our method succeeds in recognizing eyeglasses
across age, race, gender. Fig. 4b shows a PCA visualization
of the latent embedding space for the smile attribute. Our
method learns to discover smiles across age, pose, gender.

Fig. 5 in the main manuscript visualizes the qualitative
trends in PCA embeddings of the learnt LSN embeddings for
two attributes Celeb-A Faces. Fig. 4 now presents qualitative
analysis of the clustering of several other attributes in Celeb-
A Faces.
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