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A. Experimental detail
A.1. Anime face sampling

The Anime face dataset has a very high diversity in tex-
ture and facial shape and pose, which makes the dataset no-
tably sparse when the dataset size is small. Therefore, we
sampled images that have similar Gram matrix [2], which is
known to control the style information, to limit the textural
diversity. This made the problem easier.

A.2. Model selection

We used SNGAN [3] for unconditional GAN model,
and SNGAN projection [3, 4] and BigGAN [1] for con-
ditional GAN model. We used SNGAN-128 in the of-
ficial SNGAN implementation1 and our reimplementation
of BigGAN-256 with the official pretrained weight2. We
used VGG16 [5] trained on ImageNet for perceptual loss.
We used layer ‘ conv1 1’, ‘conv1 2’, ‘conv2 1’, ‘conv2 2’,
‘conv3 1’, ‘conv3 2’, ‘conv3 3’, ‘conv4 1’, ‘conv4 2’, and
‘conv4 3’ for the perceptual loss. During training, for
SNGAN, we updated scale and shift parameters of all con-
ditional batch normalization layers and the fully connected
layer in the generator. For BigGAN, statistics for the fully
connected layer and all parameters to calculate batch statis-
tics were updated.

A.3. Training settings

In this subsection, we describe the training setting for the
experiments. Some experiments are trained with a different
setting from the ones bellow. For details, please refer to our
implementation.

A.3.1 For SNGAN

All models were trained for 3,000 to 4,000 training itera-
tions with batchsize 25. We used Adam optimizer with ini-
tial learning rate 0.1 for datasize 25, 0.06 for datasize 50,

1github.com/pfnet-research/sngan_projection
2tfhub.dev/deepmind/biggan-256/2

0.03 for datasize 100, and 0.02 for datasize 500. We used
λC = 0.001, λz = 0.2, and 0 ≤ λγ,β ≤ 0.02. For com-
parison experiments, we used Adam optimizer with learn-
ing rate 0.001 for encoders, and 0.0001 for the other GAN
models. We used the L1 norm for the perceptual loss. It
takes an hour on a single Nvidia P100 GPU for 3,000 train-
ing iterations.

A.3.2 For BigGAN

All models were trained for 6000 to 10000 training iter-
ations with batchsize 16. We used Adam optimizer with
learning rate 0.001 for the parameters of class embed-
dings, 0.0005 for other statistics parameters, and 0.05 for
latent vectors. We used λl

C = 0.1/
∑

i
1

clhlwl
||C(l)(xi) −

C(l)(G(zi + ϵ))||2 instead of constant value, λz = 0.2, and
λγ,β = 0. We found that with such λC , clearer images
are generated. We used L2 norm for the perceptual loss. It
takes 3 hours on 4 Nvidia P100 GPUs for 10,000 training
iterations.

B. Relationship between the scale and shift and
activation rate

In Section 3, we stated that changing γ and β is equiv-
alent to controlling the activation. In this section, we in-
vestigated the relationship between the scale γ and shift β
and the activation rate of each filter in SNGAN projection
trained on ImageNet. For the“ blenheim spaniel”class, in
Figure A, we show a plot of the relationship between γ and
β during batch normalization and the activation rate of the
output of the activation function in each layer, where each
column indicates the results of the first conditional batch
normalization in each residual block in the generator, where
each point represents each filter. For all cases, a positive
correlation exists between γ and β and the activation rate.
Therefore, it can be stated that changing these parameters is
equivalent to filter selection.
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Figure A: Relationship between the rate of active kernel and
γ and β.

C. Generated samples from Transfer GAN and
“Update all”

In this section, we show the generative results from
Transfer GAN [6] and “Update all” for each data size,
which transfers prior knowledge of generative models sim-
ilarly to our method. We used human face, anime face, and
flower images for training and chose 25, 50, 100, and 500 as
the data size. We did not test 500 for flower dataset because
the dataset has only 251 images. We stopped training the
models before the generated images collapse for Transfer
GAN. As seen in Figure B, when the dataset is small, the
Transfer GAN generates similar images, though the model
can generate clearer images than our method. “Update all”
just generate pixel-wise interpolation of training samples,
which is apparent for flower dataset. This is discussed in
the next section. Both methods generate images with better
quality and diversity as the dataset sizes become large.

Figure B: Generated images from Transfer GAN and “Up-
date all” trained with 25, 50, 100, 500 training images.

D. Comparison of interpolation results
In this section, we show the interpolation results for each

dataset when the models are trained on 25 training samples.
In Figure C, D, E, the top four rows show the interpola-
tion between two randomly sampled images, and the bottom
four rows show the interpolation between two generated im-
ages corresponding to two training samples.

The methods other than Transfer GAN, “Update all”, and
ours generate images with limited quality. Transfer GAN
seems to generate more consistent images but the generated
images are collapsed to a few modes according to the ran-
dom generation results and evaluation scores. “Update all”
just can conduct almost pixel-wise interpolation between
two images. This is apparent for the hair change of human
face and inconsistent shape of flower images. On the other
hand, our method can perform more consistent interpolation
between two images, although they are a little blurry.



Figure C: Generated human face images from all methods
trained with 25 training images.

Figure D: Generated anime face images from all methods
trained with 25 training images.

Figure E: Generated flower images from all methods trained
with 25 training images.
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