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1. Network Structure Details

We provide more detailed descriptions of our three sub-
networks: the memory encoder, the query encoder, and the
decoder. These sub-networks are illustrated in Fig. 1. The
backbone network for the encoders is the ResNet50 [7]. We
used the residual block [8] and the refinement module [22,
19] to build the decoder.

2. Multi-Object Segmentation Details

In this section, we add more in-depth details of our mask
merging operation for multi-object segmentation. If there
exist more than one object in the video, mask probability
maps for every object are independently computed by run-
ning our model for each object. Then, the predicted maps
are merged using a soft aggregation operation defined as:

pi,m = σ
(
l(p̂i,m)

)
=

p̂i,m/(1− p̂i,m)∑M
j=0 p̂i,j/(1− p̂i,j)

,

s.t. p̂i,0 = ΠM
j=1(1− p̂i,j), (1)

where σ and l represent the softmax and the logit function
respectively, p̂i,m is the network output probability of the
object m at the pixel location i, m=0 indicates the back-
ground, and M is the total number of objects.

The above operation is originally proposed in [19]. In
[19], the mask merging is performed during the testing as
a post-processing step. Different from the original work,
we coin Equation (1) as a differential network module and
apply it during both the training and the testing. Using the
mask merging module, our network outputs per-pixel M+1
way classification results (similar to the semantic segmen-
tation) and it can be trained end-to-end using the cross en-
tropy loss. Besides, if there are multiple objects, we provide
additional information to the memory encoder about other
objects. Specifically, a probability mask for all other ob-
jects, computed as oi,m =

∑M
j 6=m pi,j , is additionally given.

*This work was done during an internship at Adobe Research.

3. More Results

Full results on the DAVIS-2016. In Table 2, we provide a
full table with results on the DAVIS-2016 benchmarks [21].
We include results omitted in the main paper due to the
space limit, e.g. methods with the mean J score below
79 and variants of some methods evaluated without online
learning.

Results on DAVIS-2017 test-dev set. In Table 2, we re-
port the results of multi-object video segmentation on the
DAVIS-2017 test-dev set. In case of test-dev set, we resize
the test video to be 600p to handle small objects. And, for
some videos with many objects (e.g. salsa), we reduced the
memory saving frequency to avoid GPU memory overflow.

4. Video Comparisons on DAVIS.
We provide side-by-side comparisons on the

DAVIS benchmark [20, 23] in the video file
Comparisons DAVIS.mp4. We compare our method
against three state-of-the-art methods: OSVOS [2],
RGMP [19], and PReMVOS [16]. We choose some
challenging video sequences from both DAVIS 2016 [20]
and 2017 [23]. The pre-computed results of other methods
are downloaded from the DAVIS benchmark leaderboard1
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Figure 1: A detailed illustration of three sub-networks: the memory encoder, the query encoder, and the decoder.
⊕

indicates
element-wise addition. The output channel dimension and the relative spatial scale of each layer (block) is shown on the left
and the right, respectively.

OL J Mean F Mean

OSMN [28] 37.7 44.9
FAVOS [4] 42.9 44.2
OSVOS [2] X 47.0 54.8
OnAVOS [26] X 49.9 55.7
OSVOSS [2] X 52.9 62.1
RGMP [19] 51.3 54.4
FEELVOS [25] 55.1 60.4
Lucid [14] X 63.4 69.9
CINN [1] X 64.5 70.5
DyeNet [15] X 65.8 70.5
PReMVOS [16] X 67.5 75.7

Ours 69.3 75.2

Table 1: The quantitative evaluation on DAVIS-2017 test-
dev set. OL indicates online learning.
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OL J Mean F Mean Time

MaskRNN† [9] 56.3 - -
BVS [18] 60.0 58.8 0.37s
SFL† [5] 67.4 66.7 -
OFL [24] 68.0 63.4 120s
MSK† [20] 69.9 - -
PLM [29] X 70.0 62.0 0.3s
VPN [12] 70.2 65.5 0.63s
OSMN [28] 74.0 72.9 0.14s
SFL [5] X 74.8 74.5 7.9s
PML [3] 75.5 79.3 0.27s
S2S (+YV) [27] X 79.1 - 9s
MSK [20] X 79.7 75.4 12s
OSVOS [2] X 79.8 80.6 9s
MaskRNN [9] X 80.7 80.9 -
VidMatch [10] 81.0 - 0.32s
FEELVOS (+YV) [25] 81.1 82.2 0.45s
RGMP [19] 81.5 82.0 0.13s
A-GAME (+YV) [13] 82.0 - 0.07s
FAVOS [4] 82.4 79.5 1.8s
LSE [6] X 82.9 80.3 -
CINN [1] X 83.4 85.0 >30s
PReMVOS [11] X 84.9 88.6 >30s
OSVOSS [17] X 85.6 86.4 4.5s
OnAVOS [26] X 86.1 84.9 13s
DyeNet [15] X 86.2 - 2.32s

Ours 84.8 88.1 0.16s
Ours (+YV) 88.7 89.9 0.16s

Table 2: Quantitative evaluation on DAVIS-2016 validation
set. OL indicates online learning. Time shows the approx-
imated runtime (seconds per frame). † indicates a variant
without the use of online learning. (+YV) indicates the use
of Youtube-VOS for training.
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