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A. Inception-like meta-architecture


Similar to Fig. 4 of the main paper describing ResNet-
like meta-architecture, we also describe the Inception-like
meta-architecture we used. Fig. 2 describes the architec-
ture with nine modifiable modules, it has a ‘stem’ of five
modules. Note that the modules are evolved to be het-
erogeneous, having different combination of multiple conv.
and pooling layers for each module. We describe multi-
ple examples of such evolved architectures following the
Inception-like meta-architectures in Figs. 3, 4, 5, 6, 7, 8, 9,
10, and 11.


B. Evolution training details


Our architecture evolution was done with 50 parallel
workers. Each worker selects S = 25 random samples from
the population to generate one new child architecture based
on the individual with the highest fitness (i.e., the parent).
The architecture is trained using 12 GPUs on the training
data. As training video CNNs is computationally expen-
sive, during the search, we train the models with video seg-
ments of size 32 × 176 × 176 (for HMDB and Kinetics)
or 64 × 176 × 176 (for Charades) where 32 and 64 are the
number of frames. We use the batch size of 144 (12 per
GPU). Each newly generated child architecture is trained
for 1000 iterations (i.e., it looks at 144000 samples), then
evaluated with a separate validation set of 1000 examples.
The classification accuracy measured using the validation
becomes the ‘fitness’ used in our algorithm. We observed
that relative recognition performances of the models (on the
validation set) is stable after training for 1000 iterations, and
we used this setting in our evolutionary algorithm to reduce
the model training time necessary for the architecture eval-
uation.


C. Mutation rate


In Fig. 1, we compare the architecture evolution done
with a constant mutation rate of 1 or 3 (per round) and our
annealed mutation rate. As we described in the main sec-
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Figure 1. Comparison of the architecture search with various mu-
tation rates. We observe that the constant rate takes longer to reach
higher performance while the higher mutation rate initially learns
faster, but plateaus at a lower value. Annealing the mutation rate
based on the number of architectures evaluated provides the best
performance. The x-axis is the number of evolutionary rounds and
the y-axis is the accuracy after training for 1000 iterations.


tion of the paper, our evolutionary algorithm applies a set of
random mutation operators at each round. In our annealed
mutation rate strategy, the number of the mutation operators
to apply is decided based on the evolution round i: it starts
with d = 7 mutations initially and it is linearly decreased
by bi/rc where r is 100 in our experimental setting. That
is, at the ith round, a total of max(dd − i/re, 1) random
mutations were applied to the parent. We find that the an-
nealed mutation rate performs the best. Our strategy allows
the search to explore more diverse architectures based on
the best initial models, but then refine the top performing
models after many evolution rounds.


D. Supplementary results and experiments
In addition to the experimental results in the main pa-


per, we below provide additional tables comparing our
EvaNet against more detailed baselines sharing the same
meta-architecture as our EvaNet. Table 1 compares base-
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Figure 2. Inception-like meta-architecture.


Table 1. Kinetics performance comparison to baselines.


RGB Flow RGB+F


Baselines
3D Conv 70.6 62.1 72.6
(2+1)D Conv 71.1 62.5 74.3
iTGM Conv 71.2 62.8 74.4
3D-Ensemble 74.6
iTGM-Ensemble 74.7


Top individual models from evolution
Top 1 71.9 63.8 76.4
Top 2 71.7 64.9 75.5
Top 3 72.9 64.8 75.7
EvaNet 77.2


line and EvaNet models only using RGB input, optical flow
input, and both. Table 2 illustrates the performances of
our EvaNet as well as previous works on two different set-
tings of Kinetics-400. Note that Kinetics is periodically re-
moving some of its training/validation/testing videos, and
the accuracies of the approach thus changes depending on
which version they were trained/tested on, thus the results
are not directly comparable to the ones published on the
larger set. Table 3 compares EvaNet with various baselines
similar to Table 1, this time using the Charades dataset.


Table 2. Kinetics-400 accuracy. Note that * are the reported num-
bers on the initial Kinetics dataset, which is no longer available.
We report the numbers based on the new Kinetics version from
Nov 2018. The new version has 8% less training/validation videos.


Method Kinetics-400
new old


Two-stream I3D [1] 72.6 74.1∗


Two-stream (2+1)D [2] - 75.4∗


ResNet-50 (2+1)D 72.1 -
ResNet-101 (2+1)D 72.8 -
Two-stream S3D-G [4] 76.2 77.2∗


Non-local NN [3] - 77.7∗


ResNet-50 + Non-local 73.5 -


EvaNet (ours) 77.2 -


E. Discovered architectures


We here present diverse architectures evolved in the fol-
lowing figures. The color of each layer corresponds to a
specific layer type. Check Fig. 1 of the main paper for the
illustration.


In Figures 3, 4, and 5, we show the Inception-like ar-
chitectures found when searching on Kinetics using RGB
inputs. We observe that the networks learn quite different
architectures. For example, the third inception module is
quite different in all three networks. In Figures 6, 7, and







Table 3. Charades performance comparison to baselines, all ini-
tialized with ImageNet or Kinetics weights.


ImageNet Kinetics


Baselines
3D Conv 17.2 34.6
(2+1)D Conv 17.1 34.7
iTGM Conv 17.2 34.9
3D-Ensemble 17.4 35.2
iTGM-Ensemble 17.8 35.7


Top individual models from evolution
Top 1 22.3 37.3
Top 2 24.1 36.8
Top 3 23.2 36.6
EvaNet 26.6 38.1


8, we illustrate the models found when searching on Kinet-
ics using optical flow as input. When using optical flow as
input, we observe that the architectures perfer to use layers
with shorter temporal durations, using very few layers with
size 11 and 9 when compared to the RGB networks. (2+1)D
conv layers and iTGM layers were used much more com-
monly in both RGB and optical flow architectures. Parallel
space-time conv and pooling layers with different temporal
lengths were also very commonly observed.


In Figures 9, 10, and 11, we illustrate the Inception-like
architectures evolved on Charades. We observe that on Cha-
rades, the architectures generally capture longer temporal
intervals (e.g., the first layer has size 11) and many layers
contain longer kernels (i.e., 9 and 11) especially compared
to the architectures found on Kinetics.


In addition, we also illustrate evolved architectures based
on our ResNet-like meta-architecture. Similar to the above
mentioned figures, we show three examples of evolved ar-
chitectures per Kinetics-RGB and Kinetics-Flow. Figs. 12,
Figs. 13, Figs. 14, Figs. 15, Figs. 16, and Figs. 17 show the
architectures.
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Figure 3. Kinetics RGB Top 1 with Inception Meta-architecture.
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Figure 4. Kinetics RGB Top 2 with Inception Meta-architecture.
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Figure 5. Kinetics RGB Top 3 with Inception Meta-architecture.
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Figure 6. Kinetics optical flow Top 1 with Inception Meta-architecture.
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Figure 7. Kinetics optical flow Top 2 with Inception Meta-architecture.
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Figure 8. Kinetics optical flow Top 3 with Inception Meta-architecture.







11 5 1 5 3


1


1 9


1 3


11 1


C
o
n


c
a
t


1


19


19


15


111


31


31


C
o
n


c
a
t


3


1


13


15


15


71


111


31


C
o
n


c
a
t


1


15


13


71


C
o
n


c
a
t


1


111


19


51
C


o
n


c
a
t


1


15


15


17


19


91


31


C
o
n


c
a
t


1


1 9


1 3


1 3


1 9


9 1


C
o
n


c
a
t


9


1


1 5


1 5


1 3


5 1


C
o
n


c
a
t


1


1 5


1 7


1 5


7 1


C
o
n


c
a
t


2 1


Figure 9. Charades RGB Top 1.
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Figure 10. Charades RGB Top 2.
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Figure 11. Charades RGB Top 3.
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Figure 12. Kinetics RGB Top 1 with ResNet Meta-Architecture.
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Figure 13. Kinetics RGB Top 2 with ResNet Meta-Architecture.
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Figure 14. Kinetics RGB Top 3 with ResNet Meta-Architecture.
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Figure 15. Kinetics optical flow Top 1 with ResNet Meta-Architecture.
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Figure 16. Kinetics optical flow Top 2 with ResNet Meta-Architecture.
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Figure 17. Kinetics optical flow Top 3 with ResNet Meta-Architecture.






