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Subsequently we provide additional information. In sec-
tion 1 we write down the Jacobians which are used to ap-
proximately propagate the covariance matrix through non-
linearities. Section 2 and 3 we derive the formula for the
covariance matrix of the element-wise product of indepen-
dent random vectors and, respectively, the expectation and
variance of ReLU given a Gaussian distribution. Section
4 compares the performance of Monte-Carlo dropout with
similar runtime (few samples) with our work. Further, we
show empirically in section 5 for that the sampling-based
approach converges to our analytic form for the case of the
synthetic dataset. Finally in section 6 we show further qual-
itative results of our experiments. We also refer to the video
which can be found in the supplementary material for qual-
itative results.

1. Jacobians of Activation Functions
We show the Jacobians of the activation functions -

ReLU, sigmoid and softmax - that are used throughout our
experiments. For ReLU we assume its derivative in the ori-
gin to be zero. Then the Jacobian is given by

Jij(ReLU(~x)) =

{
1, if i = j and xi > 0

0, otherwise
(1)

In case of an element-wise sigmoid function σ(~x) the
Jacobian is given by

Jij(σ(~x)) =

{
σ(xi)(1− σ(xi)), if i = j

0, otherwise
(2)

and for the softmax respectively

Jij = Si(δij − Sj) (3)

where Si and Sj are the i-th and j-th entry of the softmax
output and δij is the Kronecker delta.

2. Covariance of Hadamard Product of Ran-
dom Vectors

In the following X and Z denote random variables and
~X and ~Z denote random vectors, which may each have a

non-diagonal covariance matrix but do not depend on each
other. Further Σ ~X denote the covariance matrix of ~X .

We are interested in the covariance matrix of ~Y = ~Z ◦ ~X
resulting from an element-wise multiplication of ~Z and ~X .
Therefore we plug ~Z ◦ ~X into the definition of the covari-
ance matrix:

Σ~Z◦ ~X = E[(~Z ◦ ~X)(~Z ◦ ~X)T ]−E[~Z ◦ ~X]E[~Z ◦ ~X]T (4)

Given that ~Z and ~X are independent and that

(~Z ◦ ~X)(~Z ◦ ~X)T = (~Z ~ZT ) ◦ ( ~X ~XT ) (5)

Eq. 4 yields:

Σ~Z◦ ~X = E[~Z ~ZT ] ◦ E[ ~X ~XT ]−

(E[~Z]E[~Z]T ) ◦ (E[ ~X]E[ ~X]T ) (6)

Now we can compare Eq. 6 with

ΣZ ◦ ΣX =

(E[~Z ~ZT ]− E[~Z]E[~Z]T ) ◦ (E[ ~X ~XT ]− E[ ~X]E[ ~X]T )

= E[~Z ~ZT ] ◦ E[ ~X ~XT ] + E[~Z]E[~Z]T ◦ E[ ~X]E[ ~X]T−

E[~Z ~ZT ] ◦ E[ ~X]E[ ~X]T − E[ ~X ~XT ] ◦ E[~Z]E[~Z]T (7)

and see that Eq. 6 is equivalent to

Σ~Z◦ ~X = ΣZ ◦ ΣX+

E[~Z ~ZT ] ◦ E[ ~X]E[ ~X]T + E[ ~X ~XT ] ◦ E[~Z]E[~Z]T−

2(E[~Z]E[~Z]T ) ◦ (E[ ~X]E[ ~X]T )

= ΣZ ◦ ΣX + E[ ~X]E[ ~X]T ◦ (E[~Z ~ZT ]− E[~Z]E[~Z]T )+

E[~Z]E[~Z]T ◦ (E[ ~X ~XT ]− E[ ~X]E[ ~X]T ) (8)

Using the definition of the covariance matrix we obtain
the desired form of the equation:
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Σ~Z◦ ~X = ΣZ ◦ ΣX + E[ ~X]E[ ~X]T ◦ ΣZ+

E[~Z]E[~Z]T ◦ ΣX (9)

3. Expectation and Variance of ReLU Given a
Gaussian Distribution

We write down the first- and second-order moments of a
f(X) = max(0, X) where X is a scalar, normal distributed
random variable. We are only interested in scalar inputs
since we write out these formulars for the assumption of a
diagonal covariance matrix.

Given a univariate Gaussian N(µ, σ) with mean µ and
standard deviation σ, the expectation of f(X) is determined
by the integral

EX∝N(µ,σ)[max(0, X)]

=
1√
2πσ

∫ ∞
0

xexp

(
− (x− µ)2

2σ2

)
dx

=

√
1

2π
σexp

(
− µ2

2σ2

)
+
µ

2

(
1− erf

(
µ√
2σ

))
(10)

where erf(x) is the error function with

erf(x) =
2√
π

∫ x

0

exp(−z2)dz (11)

The variance is then given by

V arX∝N(µ,σ)[max(0, X)]

= EX∝N(µ,σ)[max(0, X)2]−EX∝N(µ,σ)[max(0, X)]2

(12)

Here we know EX∝N(µ,σ)[max(0, X)]2 via the expec-
tation. The other term yields

EX∝N(µ,σ)[max(0, X)2]

=
1√
2πσ

∫ ∞
0

x2exp

(
− (x− µ)2

2σ2

)
dx

=
1

2

(
σ + µ2

)(
1 + erf

(
µ√
2σ

))
+
µσ√
2π
exp

(
− µ2

2σ2

)
(13)

4. Comparison with Monte-Carlo (MC)
Dropout of Similar Computational Cost

We evaluate the predicted mean and standard deviation
(STD) of our approach (OUR) and MC dropout on Boston
Housing treating the result with 10000 samples as ground

Figure 1. Mean absolute difference of MC dropout/OUR and GT
(red/blue) depending on the number of samples on Boston Hous-
ing. OUR is constant without sampling. Left: Mean. Right: STD.

truth (GT). OUR is of computational advantage for more
than approximately 175 samples. Fig. 1 shows the Mean
absolute difference of MC dropout/OUR and GT (red/blue)
depending on the number of samples. Even for up to 500
samples MC dropout fails to match the accuracy of our STD
approximation. The mean approximation of MC dropout
performs already better for much fewer samples (>100).

5. Absolute Variance Difference for Synthetic
Data

Figure 2. Relative absolute error between standard deviation ob-
tained by Monte-Carlo dropout [2] and our approximation in a
double logarithmic plot. We observe that the relative absolute dif-
ference approaches increasingly small values for larger numbers
of samples.

We fit a neural network to a synthetic dataset. In 2
we show empirically that the sampling-based variance esti-
mate converges to our analytic expression. We observe that
the relative absolute difference between the sampling-based
variance estimate and our approximation converges to zero
for large numbers of samples.

6. Qualitative Results Including Our Predic-
tion

6.1. Bayesian SegNet [5]

We show more qualitative results of our approximation
using Bayesian SegNet[5] on CamVid dataset [1]. These



Figure 3. Qualitative results of Bayesian SegNet [5] on CamVid [1]. First row: Original images. Second Row: Ground truth. Third row:
Prediction using MC dropout. Fourth row: Our prediction (normal dropout activation scaling). Fifth row: Uncertainty using MC dropout.
Sixth row: Our approximation.

are shown in Fig. 3. We observe that the network is mostly
uncertain about object boundaries. We refer to the video in
the supplementary material for more qualitative results.

6.2. Monocular Depth Regression [4]

We show more qualitative results of our approximation
using monocular depth regression [4] on KITTI dataset [3].
These are shown in Fig. 4. We observe that the network
is very certain about the region of highest depth resolution
and generally uncertain about the left and right border of the
image. The latter results from the use of non-overlapping
stereo images at training time. We refer to the video in the
supplementary material for more qualitative results.

6.3. Qualitative Results of Class Hold-out

We trained BayesianSegNet1 withholding the classes for
pedestrians and cyclists. Here we show qualitative results

1only one dropout layer prior to the final layer

of this experiment (see Fig. 5). We observe that the lo-
cations of withheld classes tend to be more uncertain than
other regions of the image.



Figure 4. Qualitative results of monocular depth regression [4] on KITTI [3]. First row: Original images. Second Row: Prediction using
MC dropout. Thrid row: Our prediction (normal dropout activation scaling). Fourth row: Uncertainty using MC dropout. Fifth row: Our
approximation.

Figure 5. Qualitative results when trained without pedestrian and bicyclist classes. First row: Input image. Second row: Ground truth.
Third row: Segmentation result using Monte-Carlo dropout [2]. Fourth row: Uncertainty estimate using Monte-Carlo dropout. Fifth row:
Our approximation.
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