Supplementary Material for "AVT: Unsupervised Learning of Transformation Equivariant Representations by Autoencoding Variational Transformations"

Guo-Jun Qi^{1,2,*}, Liheng Zhang¹, Chang Wen Chen³, Qi Tian⁴

¹Laboratory for MAchine Perception and LEarning (MAPLE)

http://maple-lab.net/

²Huawei Cloud, ⁴Huawei Noah's Ark Lab ³ The Chinese University of Hong Kong at Shenzhen and Peng Cheng Laboratory

guojun.qi@huawei.com

http://maple-lab.net/projects/AVT.htm

In the conventional definition of transformation equivariance, there should exist an automorphism $\rho(\mathbf{t}) \in \operatorname{Aut}(\mathcal{Z})$: $\mathcal{Z} \to \mathcal{Z}$ in the representation space, such that $\mathbf{z} = [\rho(\mathbf{t})](\tilde{\mathbf{z}})$, where $\tilde{\mathbf{z}}$ is the representation of the original image without transformation. Here, the essence is the representation \mathbf{z} of a transformed sample can be completely determined by the original representation \mathbf{z} and the applied transformation \mathbf{t} without accessing the original sample \mathbf{x} , which is called "steerability" in literature [1].

This property can be generalized beyond the linear automorphism $\rho(t)$. Instead of sticking with a linear transformation. From an information theoretical point of view, this requires $\{\tilde{z}, t\}$ should contain all necessary information about z so that z can be best estimated from them without accessing x.

This leads us to maximizing the mutual information $I_{\theta}(\mathbf{z}; \mathbf{\tilde{z}}, \mathbf{t})$ to learn a generalized transformation equivariant representation. Indeed, by the chain rule and nonnegativity of mutual information, we have

$$I_{\theta}(\mathbf{z}; \mathbf{\tilde{z}}, \mathbf{t}) = I_{\theta}(\mathbf{z}; \mathbf{\tilde{z}}, \mathbf{t}, \mathbf{x}) - I_{\theta}(\mathbf{z}; \mathbf{x} | \mathbf{\tilde{z}}, \mathbf{t}) \le I_{\theta}(\mathbf{z}; \mathbf{\tilde{z}}, \mathbf{t}, \mathbf{x}),$$

where $I_{\theta}(\mathbf{z}; \mathbf{\tilde{z}}, \mathbf{t})$ attains the upper bound $I_{\theta}(\mathbf{z}; \mathbf{\tilde{z}}, \mathbf{t}, \mathbf{x})$ as its maximum value, when $I_{\theta}(\mathbf{z}; \mathbf{x} | \mathbf{\tilde{z}}, \mathbf{t}) = 0$, i.e., \mathbf{x} provides no additional information about \mathbf{z} with $(\mathbf{\tilde{z}}, \mathbf{t})$ given. This implies that one can estimate \mathbf{z} from $(\mathbf{\tilde{z}}, \mathbf{t})$ directly, satisfying the "steerability" property.

In the proposed variational approach, however, we maximize the following lower bound of $I_{\theta}(\mathbf{z}; \mathbf{\tilde{z}}, \mathbf{t})$

$$I_{\theta}(\mathbf{z}; \mathbf{t} | \mathbf{\tilde{z}}) = I_{\theta}(\mathbf{z}; \mathbf{\tilde{z}}, \mathbf{t}) - I_{\theta}(\mathbf{z}; \mathbf{\tilde{z}}) \le I_{\theta}(\mathbf{z}; \mathbf{\tilde{z}}, \mathbf{t})$$

between the representation and the transformation as presented in Section 3 to pursue the generalized form of transformation equivariant representation. This will be elaborated in the long version of this paper [2].

References

- [1] Taco S Cohen and Max Welling. Steerable cnns. *arXiv* preprint arXiv:1612.08498, 2016. 1
- [2] Guo-Jun Qi. Learning generalized transformation equivariant representations via autoencoding transformations. arXiv preprint arXiv:1906.08628, 2019. 1

^{*}Corresponding author: G.-J. Qi. Email: guojunq@gmail.com. The idea was conceived and formulated by G.-J. Qi, and L. Zhang performed experiments while interning at Huawei Cloud.