
Learned Video Compression: Supplementary Material

Appendix A. Architecture specifications

Here we further describe all architectural details we
could not fit in the paper, with the goal of rendering our
model fully reproducible by the reader.

A.1. State Propagator

This component is composed of 3 different submodels:
E(·),D(·) and G(·).

For both E(·) and D(·) we use a multiscale version [2] of
the Dual Path module, by combining the multiscale rendi-
tion of DenseNet [3] with the Dual Path idea [1] (see Figure
1). Specifically, we maintain 3 scales, at spatial map ratios
4, 8, 16 relative to the input frame dimensions. We set the
path size to 128, the growth parameter to 32, and the number
of module repetitions to 5. In each module, as in the Dual
Path approach, a residual is computed and added to the path,
and the state is grown by the growth factor as for DenseNet.
These operations are done with 3×3 convolutions followed
by ReLU nonlinearities (see Figure 2). The layer widths are
completely determined by the Dual Path residue and growth
parameters. This process is repeated individually for each
scale, with the input being a concatenation of the outputs of
all scales in the previous module iteration, resampled to the
current scale.

Hence, the state St is composed of 3 tensors — one for
each scale mentioned above. The function G(·) simply up-
samples the lower scales to a common map size ratio of 4,
concatenates the outputs from all scales, and again upsam-
ples by a factor of 4 to attain the final output in pixel space.

The entire model (including the encoder and the de-
coder) has a total of 29 million trainable parameters.

A.2. Spatial rate controller

This component is composed of the individual
branch encoders E1(·), . . . ,ER(·), and branch decoders
D1(·), . . . ,DR(·).

The encoders take in the output of the encoder, which is
in the form of 3 tensors at different scales (described in the
previous subsection). The different encoders may have dif-
ferent output map sizes. Each encoder Er(·) is constructed
in the following way: it first maps all tensors to the map
size assigned by the code tensor cr associated with branch
r, by performing respective upsampling or downsampling
operations. The outputs are then concatenated, and mapped
through a final 3× 3 convolution.

Figure 1. Graph of the overall structure for the multiscale dual path
architecture. Here, D(·) is the downsampling operator, and M(·)
is the dual path backbone module.

Each decoder Dr(·) performs the inverse operations
of encoder Er(·). Namely, it first maps the code tensor
through a 3×3 convolution, and then splits it into 3 different
tensors, which are resampled to the appropriate scales.

A.3. Coding procedure

For the conditioning context C within the adaptive en-
tropy coding procedure, we use the bit to the left, bit to the
top, the bit to the top left, as well as the bit at the same
location at the previous bitplane transmitted.

path growth

Figure 2. Within each multiscale dual path module, the inputs are
resampled to the same scale, processed with 3 convolutions and
nonlinearities, and then sliced at the end to provide the updates to
the path and state. The blue arrows indicate ReLUs following the
convolutions.
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Appendix B. Detailed description of test sets

B.1. CDVL SD

The Consumer Digital Video Library can be found at
http://www.cdvl.org/. To retrieve the SD videos,
we searched for VGA resolution at original and excellent
quality levels. There were a few instances of near-duplicate
videos: in those cases we only retrieved the first. All videos
are listed below.

Bennet-Watt_BeeClose_VGA60fps
Bennet-Watt_BeeZoom_VGA60fps
Bennet-Watt_CattleDogs_VGA60fps
Bennet-Watt_DecantWine_VGA60fps
Bennet-Watt_ElephantZoom_VGA60fps
Bennet-Watt_FlockSunset_VGA60fps
ntia_bpit1-vga_original
ntia_bpit2-vga_original
ntia_bpit3-vga_original
ntia_bpit4-vga_original
ntia_bpit5-vga_original
ntia_cardark-vga_original
ntia_cargas-vga_original
ntia_catjoke-vga_original
ntia_cchart1-vga_original
ntia_diner-vga_original
ntia_drmfeet-vga_original
ntia_drmside-vga_original
ntia_fish1-vga_original
ntia_fish5-vga_original
NTIA_FlamencoDancers_VGA60fps
NTIA_FlamencoShoes_VGA60fps
ntia_flower1-vga_original
ntia_overview1-vga_original
ntia_rfdev1-vga_original
ntia_schart1-vga_original
ntia_spectrum1-vga_original
ntia_store1-vga_original
ntia_street1-vga_original
NTIA_TheFootDrummer_VGA60fps
NTIA_TheFootPan_VGA60fps
NTIA_TheFootPiano_VGA60fps
NTIA_WaveRocks_VGA60fps
ntia_wboard1-vga_original

B.2. Xiph HD

The Xiph test videos can be found at https://
media.xiph.org/video/derf/. We used all videos
with 1080p resolution.

aspen_1080p.y4m
blue_sky_1080p25.y4m
controlled_burn_1080p.y4m
crowd_run_1080p50.y4m
dinner_1080p30.y4m
ducks_take_off_1080p50.y4m
in_to_tree_1080p50.y4m
life_1080p30.y4m
old_town_cross_1080p50.y4m
park_joy_1080p50.y4m
pedestrian_area_1080p25.y4m
red_kayak_1080p.y4m
riverbed_1080p25.y4m
rush_field_cuts_1080p.y4m
rush_hour_1080p25.y4m
snow_mnt_1080p.y4m
speed_bag_1080p.y4m
station2_1080p25.y4m
sunflower_1080p25.y4m
touchdown_pass_1080p.y4m
tractor_1080p25.y4m
west_wind_easy_1080p.y4m

Appendix C. Directions for future improve-
ment

Overall, we see several ways in which this work can be
improved and extended:

Generalization to bi-directional prediction. The model
presented in this work only addresses the low-latency mode:
it only implements the notion of P-frames. It lacks the abil-
ity to encode frame into the future, and use these for bi-
directional prediction using B-frames – an ability which has
gotten modern video codecs a great boost in compression
performance.

Architectural improvements. There are many architec-
tural choices we have made that we believe could be im-
proved further. Some of these include better modeling for
the encoder/decoder backbones; rethinking of how to best
represent the state, as well as propagate it from frame to
frame; and exploring the structure of the state-to-frame
module beyond simple generation of flow and residual.

Performance optimization. The model presented in this
work has not been optimized for speed, and thus is still pro-
hibitively slow for real-life deployment in computationally-
constrained environments. We are confident that it can be
sped up dramatically via architectural changes, lower data
type precision, and so on.

Better performance on trivial videos. We observe our
model to significantly outperform the standards for videos
that are spatiotemporally complex; however, interestingly, it
underperforms for very simple and static videos. Resolving
this will lead to another boost in performance.
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