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1. Riemannian SGD with Momentum (rSGD-
M)

We devised the Riemannian extension of the NAG algo-
rithm or rNAG in § 4 of our paper. In doing so, we rely
heavily on differential geometry. To do justice, we review
some basics below.

Riemannian Geometry

Definition 1 (Manifold). A manifold is a locally Euclidean
Hausdorff space whose topology has a countable base.

Locally Euclidean just means that each point has a neigh-
borhood that is homeomorphic to an open ball in R™ for
some n. Moreover, being a Hausdorff space means that dis-
tinct points have disjoint neighborhoods. This property is
useful for establishing the notion of a differential manifold,
as it guarantees that convergent sequences have a single limit
point. The exponential map Exp,(:) : T, M — M and
its inverse, the logarithm maps, Log, () : M — T, M are
defined over Riemannian manifolds to switch between the
manifold and its tangent space at «. The exponential oper-
ator maps a tangent vector A to a point y on the manifold.
The property of the exponential map ensures that the length
of A becomes equal to the geodesic distance between  and
y. The logarithm map is the inverse of the exponential map,
and maps a point on the manifold to the tangent space 1.
The exponential and logarithm maps vary as point £ moves
along the manifold.

A natural way to measure nearness on a manifold is by
considering the geodesic distance between two points on
the manifold. Such distance is defined as the length of the
shortest curve connecting the two points. The shortest curves
are known as geodesics and are analogous to straight lines in
R™. The tangent space at a point & on the manifold, 7, M,
is a vector space that consists of the tangent vectors of all
possible curves passing through x. Note that we will assume
that the key conditions needed for these maps to exist are
satisfied.
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Remark 1. In devising the rNAG, we opt for the most gen-
eral and mathematically rigorous solution that benefits from
the exponential map and its inverse. For the sake of discus-
sion, We repeat this general form of rNAG below.

o) = Expm( — ngradm(J)) , (1)
m = Expy) ( — pLogga (9(t_1))) . 2

In many cases of interest, such mappings are known. How-
ever, for some manifolds this is not the cases, meaning that
even such mappings are not known (or a closed-form might
not yet available). Furthermore, even if those mappings are
at our disposal, computationally they might not be the most
attractive solutions. In Riemannian optimization, it is very
common to replace the exponential map with a local approx-
imation of it known as a retraction v5(-) : TpM — M.
Moreover, if projection onto the tangent space of a manifold
is known, the logarithm map can be approximated easily.
This is indeed the case for the quotient geometry developed
in our paper. As such, a computationally more attractive
version of rNAG can be written as;

o) = Tm( — ngradm(J)) , 3)
m =Ty ( — g (00 — 9(t71))> ~ “)

In Eqn. (4) 74 (+) : R™ — T M denotes the mapping from
the embedded space R™ onto the tangent space at x. In the
developed quotient geometry, this is indeed the horizontal
part of a tangent vector.

Empirical Evaluations

In this part, we empirically compare rNAG against two
baselines, 1. Riemannian Stochastic Gradient Descent
(rSGD) [2] and 2. Riemannian SVRG (rSVRG) [14]. Briefly,

e rSGD is the extension of SGD to the Riemannian man-
ifolds and under some mild conditions enjoys conver-
gence properties.



Figure 1. Examples of the YaleB Dataset [9].

e rSVRG is the extension of SVRG [6] to the Rieman-
nian framework to solve constrained problems. rSVRG
cyclically stores an optimal estimate of the parameters
and ensures the subsequent updates do not deviate too
far from this store optimal estimate.

Towards our goal, we will consider two classical learning
tasks, namely PCA and and compare rNAG to rSGD and
rSVRG. Before delving deeper, our tests (which simply go
beyond the two experiments here) show that INAG converges
faster and usually to a lower loss as compared to rSGD.
Comparing to rSVRG, we have observed that INAG usually
converges faster but in some cases (e.g., second experiment
here) the solutions obtained by rNAG and rSVRG are close
(which is indeed a positive result). Having said this, a proper
and detailed study of the NAG algorithm deserves a separate
and dedicated work. We believe that our current work is
the first step to employ rNAG algorithm in training deep
structures.

1.1. Experiment#1. PCA

The PCA objective function is to minimize a form of
reconstruction error as

2
J(U) = HX - UUTXHF,
st. U'U=T,. S

Here, X € R™*¥ is a matrix whose columns are N data
points and U € R™*? is the PCA projection. We stress that
while (5) can be solved by eigenvalue decomposition, it is a
classical problem to study when it comes to Riemannian opti-
mization [3, 14] and hence our choice here. The orthogonal-
ity constraint may imply that this problem shall be addressed
using the geometry of the Stiefel manifold. However, we
note that the objective function satisfies J(U) = J(U R),
for R € O(p). This indeed leads to a quotient space of
the Stiefel manifold which is known as the Grassmannian.
Formally, a Grassmann manifold G(p,n) is the space of p-
dimensional linear subspaces of R” for 0 < p < n [1]. As
such minimizing J can be view as an optimization problem
over the Grassmann manifold G(p, n)

min

2
‘X - UUTXH 6)
UeG(p,n) F

In Fig. 2, we compare the results of rNAG against
rSGD and rSVRG for solving (6) on G(256,2016) (2016 =
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Figure 2. Convergence behavior of the INAG, rSGD and rfSVRG
to address the PCA problem using G (256, 2016) .

48 x 42). In this experiment, we use the YaleB [9] dataset
which consists of images of 38 subjects captured at 64 dif-
ferent illumination conditions. We have used a preprocessed
version of the database, where each face is cropped and
downsampled to a 48 x 42 image. We use the first 52 im-
ages of every subject for training (YALEB-Train) and the
remaining 12 images for testing (YALEB-Test) (see Fig. 1 for
examples). Empirically, we observed very similar behavior
for the studied algorithms when the dimensionality of the
subspaces varies (i.e., p). Studying Fig. 2 clearly shows that
rNAG is superior to both rSGD and rSVRG when speed and
accuracy of the solution are considered.

1.2. Experiment#2. Fréchet Mean

Symmetric Positive Definite (SPD) matrices are impera-
tive in computer vision [5]. As our second experiment, we
consider the problem of computing the Freéchet mean of
a set of SPD matrices Ay, Ay --- Ay, such that A; € SY,,
i =1,...k. The objective function can be expressed as the
follows

2

k
miny" Hlog(A;l/QMA;l/Q)HF
%

st. MeSh, . @)

In (7), log denotes the principal matrix logarithm [4] and
should not be confused with the logarithm map on a Rie-
mannian manifold. For this experiment, we use the Kylberg
texture dataset [8]. The Kylberg dataset consists of patches
from 28 different texture classes with 160 unique samples
per class. We scaled the images to 128 x 128 pixels and
computed 5x5 covariance descriptors [ | 1] using following



—a—rSGD

Objective

1t L e 9000

0 10 20 30 40 50
Training Epochs
Figure 3. Convergence behavior of the INAG, rSGD and rfSVRG
for computing the Freéchet Mean on S% .
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where I,, , represents the intensity at location (u, v). Fig. 3
plots the behavior of INAG, rSGD and rSVRG for this experi-
ment. As before, INAG is superior to both rSGD and rSVRG
when the convergence speed is considered. In terms of the
performance and the value of the objective function, INAG is
clearly superior to rSGD while providing very similar results
to rISVRG.
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2. Overview of Datasets used for Fine-Grained
Image Classification

e The CUB-200-2011 [13] consists of 11,788 images
of birds from 200 different varieties. The first 100
categories are considered for training (5,864 images),
while the rest 100 categories are considered for testing
(5,924 images).

e The CARS196 dataset [7] consists of 16,185 images
of cars from 196 different categories. The first 98 cat-
egories (8,054 images) are considered in the training
of the network, while the next 98 categories (8,131
images) are used in the testing phase.

e The SOP dataset [10] consist of 120,053 images of
22,634 different products sold in eBay.com . The first
11,318 categories is used for training and the remaining
11,316 categories is used for testing.

Fig. 4 shows examples of the three datasets.

(c) SOP [10]

Figure 4. Exemplar samples of the three fine-grained image classi-
fication datasets used for evaluation of qConv and Stiefel layers.

Qualitative Measures

Apart from the quantitative measures reported in the pa-
per, here we provide the Barnes-Hut t-SNE visualization [12]
of the proposed geometrical embedding spaces, i.e. qConv
and Stiefel, for all the three datasets used for in the fine-
grained image classification experiments. Fig. 5, 6 and 7
and Fig. 8, 9 and 10 show the t-SNE plots for the Stiefel
and qConv embedding configurations respectively for CUB-
200-2011, CARS196 and SOP datasets. These plots are best
viewed when zoomed in.



Figure 5. Barnes-Hut t-SNE [12] visualization of our Stiefel embedding on the test set of the CUB-200-2011 [13]. Best viewed when
zoomed in.



Figure 6. Barnes-Hut t-SNE [12] visualization of our Stiefel embedding on the test set of the CARS196 [7]. Best viewed when zoomed in.
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Figure 7. Barnes-Hut t-SNE [12] visualization of our Stiefel embedding on the 20000 random samples chosen from the test set of the

SOP [10]. Best viewed when zoomed in.



Figure 8. Barnes-Hut t-SNE [12] visualization of our qConv embedding on the test set of the CUB-200-2011 [13]. Best viewed when
zoomed in.



Figure 9. Barnes-Hut t-SNE [12] visualization of our qConv embedding on the test set of the CARS196 [7]. Best viewed when zoomed in.



ol
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Figure 10. Barnes-Hut t-SNE [12] visualization of our qConv embedding on the

SOP [10]. Best viewed when zoomed in.
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