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In this supplementary material we include; (1) Section 1.1: Proof of Lemma 1, (2) Section 1.2: Proof of relation between
constrained optimization problem in (8) and its Lagrangian formulation in (9), (3) Section 1.3: Proof of Theorem 2, (4)
Section 1.4: Proof of Theorem 3, (5) Section 2: Empirical moments based solution to linear encoder, (6) Section 3: A
detailed description of the Kernel-ARL extension, including derivation of its solution, (7) Section 3.2: Proof of Lemma 4,
(8) Section 4: Additional analysis of experimental results, and (9) Section 5: Discussion on computational complexity of the
Spectral-ARL solutions.

1. Proofs

We recall that for any square matrix M., its trace, denoted by Tr[M] is defined as the sum of all its diagonal elements.
The Frobenius norm of M can be obtained as ||M||%.= Tr(IMMT). This allows us to express the MSE of a centered random
vector in terms of its covariance matrix:

]E{Hy - byHQ} =Tr [E{(y —by)(y - by)T}} = Tx[C,].

Let A and B be two arbitrary matrices with the same dimension. Further, assume that the subspace R(A) is orthogonal to
R(B). Then, using orthogonal decomposition (i.e., Pythagoras theorem), we have

&+ Bl =[] + 1Bl
We provide the statements of the lemmas and theorems for sake of convenience, along with their proofs.

1.1. Proof of Lemma 1

Lemma 1. Let x and t be two random vectors with E[x] = 0, E[t] = b, and C, > 0. Consider a linear regressor,
t = Wz + b, where W € R™*" is the parameter matrix, and z € R" is an encoded version of X for a given Op:
X+ z=0px, Og c R The minimum MSE that can be achieved by designing W is given as
. - _ 2
mip Elle 17 = Te[C] — [|Pu@; " Cu}

where M = Q,0©L € R™", and Q,. € R™4 is a Cholesky factor of C, as shown in ().



Proof. Direct calculations yield:
Joo= E{fe-1}
- Tr[E{(t —b-Wz)(t—b- WZ)TH
- T :E{(t —b)(t —b)T + (WOpx)(WOzx)T — (t — b)(WOpx)T — (WOpx)(t — b)TH
- Tr :Ct + (WOR)Co(WO5)T — Cpo(WOR)T — (W@E)cz;}
= Tr[Ci+ (WOpQL)(WOLQL)" - Ci(WO)" — (WOR)CT, |

= Tr

(WerQl - C.Q;)(WerQ! - C.Q;!)’ + i - (CuQ;)(CuQs )]
= [Q:OFW” — Q. Cyy [ — QT Cu[f. + Tr(C]

Hence, the minimizer of J; is obtained by minimizing the first term in the last equation, which is a standard least square error
problem. Let M = Q,©Z, then the minimizer is given by

W' =M'Q,"C,,
Using the orthogonal decomposition
197 Cot[7 = [P Q" Cot [+ | Pra= Qi " Coa [
and
1Q.0FWT —Q.7Coull. = MW — PrQ. 7 Cou|}. + || Paar Q; " Ca [

| MM Q. 7Coy = PaaQ, T C}. + || Par Q. T C [
P

[Pas Q5" Ca

2
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we obtain the minimum value as )
Te[C] - [[PmQ: " Cat

O
1.2. Relation Between Constrained Optimization Problem in (8) and its Lagrangian Formulation in (9)
Consider the optimization problem in (8)
G, = arg rrgn Jy(G), st. Jo(G) > (A)
and the optimization problem in (9)
G, = argmén I (G) (B)

where
IANG)=(1-XNJy(G) - A(G), Ae]0,1]
Claim 1. For each ) € [0, 1), solution G, of (B) is also a solution of (A) with
a=Js(G)). ©)

Proof. Let us consider (A) while assuming that (B) is satisfied. For each A and G, let « be given as in (C). For an arbitrary
G satisfying J;(G) > «, we have

(I=XNJy(Gr) —Aa = (1—=XN)Jy(Gr) — AJ(G))
< (1= (G) = As(G),
where the second step is from the assumption that B is satisfied. Consequently, we have,
(1 =N [Jy(G) = Jy(Gy)] = A[Js(G) —a] > 0.
Since J5(G) > a, this implies that J,(G) > J,(G) and consequently G is a possible minimizer of problem (A). O



1.3. Proof of Theorem 2

Theorem 2. As a function of G € R¥*", the objective function in equation (9) is neither convex nor differentiable.

Proof. Recall that Py is equal to Gr(GLGr)'GE. Therefore, due to the involvement of the pseudo inverse, (9) is not
differentiable (see [2]).

For non-convexity consider the theorem that f(G ) is convex in G € R" if and only if h(t) = f(t Gy + Ga) is
convex in t € R for any constants G, Go € R4*" (see [1]).

In order to use the above theorem, consider rank one matrices

10 0 10 ...0
0 0

G, =100 and Gy = |0
0 0 0] 0 0 0]

Define Gg = (t G + G2). Then

1
Pg(t) = Gp(GLGp)'GE = Gr12+1 0 0

Using basic properties of trace we get,
(1= 0)Jy(Gp) — My(Gp) = Te[Po(H)B],

where the matrix B is given in (14) and we used Lemma 1. Now, represent B as

b1 b2 ... big

big by ... by
B =

big baa ... bag

Thus,

2b12(t 4+ 1) 4 bag — b1y

’IT[Pg(t)B} = by + G141

It can be shown that the above function of ¢ is convex only if b;3 = 0 and b;; = by2. On the other hand, if these two
conditions hold, it can be similarly shown that (1 — A\)J,(Gg) — AJs(Gg) is non-convex by considering a different pair of
matrices G and G. This implies that (1 — X).J,(Gg) — AJs(Gg) is not convex. O

1.4. Proof of Theorem 3

Theorem 3. Assume that the number of negative eigenvalues () of B in (13) is j. Denote v = min{r,j}. Then, the
minimum value in (10) is given as,

Pr+Bat-+ 5y (D)

where 51 < B2 < ... < B, < 0 are the vy least eigenvalues of B. And the minimum can be attained by Gg = 'V, where the
columns of V are eigenvectors corresponding to all the ~ negative eigenvalues of B.



Proof. Consider the inner optimization problem of (10) in (11). Using the trace optimization problems and their solutions
in [3], we get
min  Jy(Gg) = min  Tr[GLBGg| =81+ B+ + B,
GLGEp=I; GIGgp=I,
where 1, B2, ..., (B; are i smallest eigenvalues of B and minimum value can be achieved by the matrix V whose columns
are corresponding eigenvectors. If the number of negative eigenvalues of B is less than 7, then the optimum ¢ in (10) is 7,
otherwise the optimum 7 is 7. O

2. Empirical Moments Based Solution to Linear Encoder

In many practical scenarios, we only have access to data samples but not to the true mean vectors and covariance matrices.
Therefore, the solution in Section 3.2 might not be feasible in such as case. In this Section, we provide an approach to solve
the optimization problem in Section 3.2 which relies on empirical moments and is valid even if the covariance matrix C,, is
not full-rank.

Firstly, for a given ® g, we find

Jy = min MSE(y —y).

Y ’by
Note that the above optimization problem can be separated over W, b,,. Therefore, for a given W, we first minimize over
b,:
Yy

rréinE{||Wy®EX+by _y||2}
1 n
y nk:l

1 « 2
=~ [IWyO@pxi +c—yill
k=1

where we used empirical expectation in the second stage and the minimizer c is

1 n
c = - Z (Yk — WyG)EXk)

"=
1 & 1 «

= =Y n-W,05-> x
ns nia

— Ely) - W,05E{x) (E)

Let all the columns of matrix C be equal to c. We now have,
Jy = Wi MSE (y —y)

1 2
= Hvl‘}fﬁHWyeEX—’—C_YHF
1 .
= win [W,05X - Y]
N ST (2
= min || X*erwW, — Y|,
= in S [MWT - Py YT 4 [P YT
- Wyn Y M F n M F

1 - - 1 -
= || MM P YT = P YT+ | P YT

Pnm
1 712
- ﬁHPM*YT‘F
172 1 T2
= Lz - ey



Algorithm 1 Spectral Adversarial Representation Learning

Input: data X, target labels Y, sensitive labels S, tolerable leakage aumin < Qo] < Qmax, €
Output: linear encoder parameters © g
L, < orthonormalize basis of X7
Initiate A = 1/2, Apin = 0 and Apax = 1
do
Calculate B in (G)
G < eigenvectors of negative eigenvalues of B
Op + GLLI(X)t
Calculate « using (F)
if & < (agor — €) then Apiy, = Aand A < (A 4+ A\pax)/2
else if &« > (o1 + €) then Ao = Aand A <+ (A + Apin) /2
end if
: while |a - ozt01| >e€

R AN A R

—_ = = =
W N = O

where in the third step we used (E), M = )NCT(-)g and the fifth step is due to orthogonal decomposition. Using the same
approach, we get

1272 1 T2
L= ST s ®

Now, assume that the columns of L, are orthogonal basis for the column space of X7, Therefore, for any M, there exist
a Gp such that L,Gg = M. In general, there is no bijection between @ and G in the equality XTG)g = L,Gg.

But, there is a bijection between G and © g restricted to @ g’s in which R(OL) C NV (XT)L. This restricted bijection is
sufficient to be considered, since for any @E eEN (XT) we have M = 0. Once G is determined, ®§ can be obtained as,

0% = (X")'L,Gg + 8, © CN(X").

Howeyver, since ) ) ~ ) )
105 = |9l = |(X) LeGpl[5 +[|©0] .

choosing ®; = 0 results in minimum ||G) EH - Which is favorable in terms of robustness to noise. By choosing ®¢ = 0,

determining the encoder © i would be equivalent to determining G g. Similar to (7), we have Py = L, PgLZ. If we assume
that the rank of Pg is i, Jx(Gg) in (12) can be expressed as,

(G r) = AL GRGELIST [} (1= )L, GrGELIY

where G gGL = Pg for some orthogonal matrix G g € R?¥?. This resembles the optimization problem in (10) and therefore
it has the same solution as Theorem 3 with modified B given by

B = L7 ()STé —(1- A)YTY)L,,E. G)

Once G is determined, © g can be obtained as GgLf(X)T. Algorithm | summarizes our entire solution for the case if one
wishes to consider the constrained optimization problem in (8) instead of Lagrangian version of it in (9).

3. Non-linear Extension Through Kernelization

We assume that x is non-linearly mapped to ¢, (x) as illustrated in Figure 1. From the representer theorem (see[4]), we
note that © i can be expressed as @ = A®L. Consequently the embedded representation z can be computed as,

z=0g¢,(x) = A@fqbw(x) = ADT[k:I(xl,x)7 R kx(xn,x)}T
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Figure 1: Kernelized Adversarial Representation Learning consists of four entities, a kernel ¢,.(+), an encoder E that
obtains a compact representation z of the mapped input data ¢, (x), a predictor 7" that predicts a desired target attribute y
and an adversary that seeks to extract a sensitive attribute s, both from the embedding z.

3.1. Learning
First, for a given fixed ® g, we find
Jy = Vgﬂlr,; MSE (¥ —y).
Note that the above optimization problem can be separated over W, b,,. Therefore, for a given W, we first minimize over
by:

minE{ [W,©p¢.(x) + b, - y|*}

Y

1
= Irglynﬁ;HWy@E%(Xk‘)‘*‘by_y’fHQ

1 n
= D [WyOnou(xi) + e~ vl
k=1

where the minimizer c is,

c — %i (yk - Wy®E¢z(Xk)>
k=1

1 — 1 —
= EZYk _Wy@EEZQSﬁ(Xk)
k=1 k=1

= E{y} - W,0pE{¢,(x)}. (H)



Let all the columns of C be equal to c. Therefore we now have,

whin MSE (y —y)

Yo

— in W05, + C- Y[}

— i [W,008, - Y|}

— in s [$TOFW] - Y7}

= g MW BT R Y

1 ~ - 1 -
o YR GRS

P
1 .
= Yprr
1,-~ 1 ~
- L - Leare o

where the third step is due to (H), M = @g@% and the fifth step is the orthogonal decomposition w.r.t. M. Using the same
approach, we get

1,2 1 ~ 12
so= Lt et o

_ Finding optimal © is equivalent to finding optimal A (since ® z = A®T) where we would have M = ®7®,AT =
K_.AT. Now, assume that the columns of L, are orthogonal basis for the column space of K. As a result, for any M, there
exist G g such that L, G z = M. In general, there is no bijection between A and G in the equality K, A7 = L, G . But,

- L
there is a bijection between G g and A restricted to A’s in which R(AT) C N(K,) . This restricted bijection is sufficient,
since for any AT € N'(K,) we have M = 0. Once G is determined, AT can be obtained as,

AT = (K,)'L,Gg + Ay, Ao CN(K,)

However, since

Al = AT]5 = (Ko LaGelf + Aol
choosing Ag = 0 results in minimum HAH o which is favorable in terms of robustness to the noise. Similar to (7), we have
Py = L, PgLL. If we assume that the rank of Pg is i, Jx(Gg) in (12) can be expressed as,

(@) = AL GRGELIST ~ (1~ )L G GELTY

where Pg = G EGTE for some orthogonal matrix G z € R?*?, This resembles the optimization problem in (10) and therefore
have the same solution as Theorem 3 with modified B as,

B = L7 ()\STS (- A)YTY) L, (K)

Once G is determined, A can be computed as GgLf(Kg)T Algorithm 1 summarizes our entire solution (replacing X
by IN{;C in steps 3 and 8) if one wishes to consider the constrained optimization problem in (8) instead of unconstrained
Lagrangian version in (9). It is worth of mentioning that the objective function J) (G g) is neither convex nor differentiable.
The proof is exactly the same as Theorem 3.

3.2. Proof of Lemma 4

Lemma 4. Let the columns of L, be the orthonormal basis for Kr (in linear case Km = XTX). Further, assume that the
columns of 'V, are the singular vectors corresponding to zero singular values of SL, and the columns of V, are the singular



vectors corresponding to non-zero singular values of YL,. Then, the MSE for the adversary and the target are bounded on
both sides i.e., 0tmin < Js < Qmax and Ymin < Jy < Ymax:

1,~ 1 -
Youin = Y77 = ~ VL |}
172 1< 2
“Tmax = gHYTHF - ﬁHYLfL’VSHF
1. ~+2 1, ~ 2
amin = |8 = —[|SLaVy [
1,272
e

Proof. First, let us ignore the objective corresponding to leakage of the sensitive attribute in (8) or equivalently set A = 0 in
equation (9). In this scenario, J,, achieves its minimum possible value (denoted by ymin) as,

Yo = 2[5 | Pa¥ T
= VR - e L ALE Y
= %HYTHi - %mgx { G T[GHLI Y YL,G) |
= T S [VILIY YLV,
= LI L5
= S I 0

where the fourth step is borrowed from trace optimization problems studied in [3] and o} ’s are the singular values of YL,.
Now, we show how to reduce the amount of leakage without degrading the performance of the target task. For this purpose,
assume that columns of matrix G is the concatenation of the columns of V, together with at least one singular vector
corresponding to a zero singular value of YL,. Since V,, C G, therefore | L, Py, LTU||%4 < || L, PsLIU||% for any arbitrary
matrix U. As a result, J,(Gg) > Js(V,). Reducing V,, by excluding all singular vectors associated with zero singular
values form J, does not change i, (step five in (L)), but will increase J. As a result, oy, in the constrained optimization
problem (8) which is associated to the maximum leakage of sensitive attributes is,

Ligryz _ 1 TQT |2
i = LIS~ ey, 8
Lar)2 1 T1TET &
= ﬁ||s e — ﬁTr[Vy LIS"SL,V,]
Tharnz  1ja 2
= EHS HF - ﬁHSLwV’yHF'

Now, consider the situation where we only seek to prevent leakage of sensitive attributes i.e., the objective of optimization
problem in (8) is ignored or equivalently setting A = 1 in equation (9). In this case, aax in the constrained optimization
problem (8) which is associated to the minimum leakage of sensitive attributes is,

1y arn2
e = =[S

which can be achieved via trivial choice of V; = 0. However, we let the columns of V5 be the singular vectors corresponding
to all zero singular values of SL, to maximize ||PMYT H r and consequently minimize J,. As a result, the maximum J, is,

1< 1<
s = YT = S [ VLV



0.9

06 r 7 0.96

05

0.4 r 10.93

0.3

-
=
2
[}
H
©
£
=

0 0.25 05 0.75 1
A

(a) Adult Dataset Encoder (b) CIFAR-100: Adversary Bounds

4. Numerical Experiments

For the adult dataset, the linear encoder maps the 14 input features to just one dimension. The weights assigned to each
feature is shown in Figure 2a. Notice that the encoder assigns almost zero weight to the gender feature in order to be fair with
respect to the gender attribute.

Figure 2b shows the mean squared error (MSE) of the adversary for the CIFAR-100 experiment as a function of the
Lagrange multiplier A\. The plot illustrates, (a) the lower and upper bounds ay,i, and amax respectively calculated on the
training dataset, (b) achievable adversary MSE computed on the training set cv;ain, and finally (c) achievable adversary MSE
computed on the test set aes;. Observe that on the training dataset all values of & € [aunin, max] are reachable as we sweep
through A € [0, 1]. This is however not the case on the test set since the bounds are computed using empirical moments as
opposed to the true covariance matrices.

5. Computational Complexity

Solving the optimization problem runs in O(d?) since we need to eigendecompose the d x d matrix B. Both Cholesky
factorization C, = Q' Q, and obtaining Q! require O(d*). Obtaining the mapping © g from G takes O(d?) again.
Calculating covariance matrices C,, C,, and Cs, can be done in O(d*n), O(p*n) and O(q?d) respectively. In Kernel-
SARL, eigendecomposition of B requires O(n?). However, for scalability i.e., large n (e.g., CIFAR-100), the Nystrém
method (i.e., sampling the data) can be adopted.
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