
Supplementary Material

0 100000 200000 300000 400000 500000 600000
Number of iterations

2

3

4

5

6

7

8

9

EP
E

Learning curve comparison
AutoDispNet-C
DispNet-C
Random

Figure 1: Learning curve comparison. We compare
the learning curve of AutoDispNet-C with the baseline
DispNet-C and an architecture built with random cells sam-
pled from our search space (denoted by Random). The evo-
lution of EPE over number of iterations is shown for the
FlyingThings3D dataset (test split).

1. Learning curves

Figure 1 shows the learning curve (evolution of EPE over
number of iterations) of AutoDispNet-C. In addition to the
baseline (DispNet-C), we also compare the learning curve
of a random cell architecture. We randomly sample cells
from the search space and stack them in the same fashion
as AutoDispNet-C (see section 6 of main paper). We sam-
ple four times and build four different random architectures.
After training, we pick the best random architecture based
on the validation performance on FlyingThings3D. All net-
works are trained using the same settings as the baseline.
Learning curve of the best random architecture is shown in
Figure 1. We observe that AutoDispNet-C clearly outper-
forms the random architecture and the baseline. We also
observe that the random architecture is comparable to the
baseline. Our observation is similar to Liu et al. [7] on
classification, where they also report a surprisingly strong
performance for random architectures.

2. Performance of smaller networks

We train networks of reduced capacities for both
AutoDispNet-C and DispNet-C architectures. For DispNet-
C smaller networks are obtained by multiplying the number
of channels for each layer by fixed factor (similar to [3]).
Smaller variants of AutoDispNet-C are obtained by reduc-
ing the number of channels (Cinit) for the first cell. A
comparison of EPE vs number of parameters and EPE vs
FLOPS is shown in Figure 2.

3. Optimizing the refinement network

Network stack EPE
C S (Sintel)

Dense-DARTS reuse cells 2.30
Dense-DARTS Dense-DARTS 2.32

Dense-DARTS + BOHB reuse cells + hyperparams 2.14
Dense-DARTS + BOHB reuse cells + BOHB 2.16

Table 1: We show the results of optimizing cells and hy-
perparameters of the refinement network in a stack contain-
ing two networks (AutoDispNet C and S). First row shows
a network where cells for the first network are learned us-
ing Dense-DARTS and the refinement network reuses these
cells. In the second row, we learn new cell structures of the
refinement network using Dense-DARTS. In the third row,
we learn cells for the first network and tune the hyperpa-
rameters using BOHB. In this case, the refinement network
reuses both cells and hyperparameters. In the fourth row,
we learn new hyperparameters for the refinement network
using BOHB but still use the same cell structures as the first
network.

In a stacked setting, the refinement network predicts the
residual for correcting errors in predictions from the pre-
vious network. Since this task is different from predict-
ing disparity from scratch, we trained a search network to
learn specialized cells for the refinement task. However,
we found that learning cells for the refinement network did
not improve performance over reusing cells learned for the
first network. The same argument can also be made for op-
timizing hyperparameters of the refinement network using
BOHB. Surprisingly, even BOHB did not yield improve-

0 5 10 15 20 25 30 35 40
Num parameters (M)

3.00

3.25

3.50

3.75

4.00

4.25

4.50

EP
E

(S
in

te
l)

AutoDispNet-c

DispNet-C

AutoDispNet-C

EPE vs Number of parameters
DispNet
AutoDispNet

(a) EPE vs Params

10 20 30 40 50 60 70
FLOPS (B)

3.00

3.25

3.50

3.75

4.00

4.25

4.50

EP
E

(S
in

te
l)

AutoDispNet-c

DispNet-C

AutoDispNet-C

EPE vs FLOPs
DispNet
AutoDispNet

(b) EPE vs FLOPS

Figure 2: Performance of smaller networks. We compare the test performance of smaller DispNet and AutoDispNet architec-
tures. In Figure 2a, we see that AutoDispNet architectures have a lower error with reduced number of parameters compared
to the baseline. A similar trend is observed on comparing the EPE with respect to FLOPS (Figure 2b).
The EPE is shown for the Sintel dataset.

ments over reusing hyperparameters learned for the first net-
work. We show our experimental results in Table 1. We
conjecture that the refinement task is much simpler than es-
timating disparity from scratch and optimizing cells or hy-
perparameters is trivial in this case.

4. Finetuning on the KITTI dataset

For finetuning on KITTI, we optimize the learning rate
and weight decay coefficient using BOHB for the first net-
work in the stack. For running BOHB, we take all samples
from KITTI’12 and KITTI’15 datasets and use 70% of the
mixture for training. The remaining 30% of the samples are
used for validation. We ran BOHB in parallel on 5 GPU
workers for a total number of 10 SuccessiveHalving itera-
tions. We used the default BOHB settings with η = 3 and
budgets 10k, 30k and 90k mini-batch iterations. For each
budget the learning rate is annealed to zero using a cosine
schedule. Figure 3 shows the EPE of all sampled config-
urations throughout the optimization procedure. The opti-
mized hyperparameters are then used to finetune the suc-
cessive networks in the stack. For the last network, we add
two more decoding stages to go to full resolution. Here,
we use transposed convolutions instead of upsampling cells
because applying the cell structure at higher resolutions be-
comes computationally expensive.

5. Single view depth estimation

To evaluate on single view depth estimation, we used the
proposed extension of DARTS and compare our results with
the competitive method by Laina et al. [5], which uses a

104 105

wallclock time [s]

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100

EP
E

AutoDispNet-C EPE on KITTI validation set during BOHB optimization

budget = 10k iterations
budget = 30k iterations
budget = 90k iterations

Figure 3: Hyperparameter optimization on KITTI.
AutoDispNet-C EPE of all sampled configurations on the
different budgets throughout the BOHB optimization pro-
cedure. The black line shows the best performing configu-
rations (incumbent) as a function of time.

ResNet based encoder-decoder with hand-designed upsam-
pling blocks. For a fair comparison, we evaluated both
architectures by training them on a subset of the SUN3D
dataset using the same hyperparameters and loss function.
Please note that in this setting, the siamese part of the net-
work is replaced with a single stream. The extracted ar-
chitecture is then fine-tuned on ∼10, 000 samples from the
NYU train dataset using BOHB (optimizing the learning
rate and weight decay).

Algorithm 1: Hyperband pseudocode
input : min/max budgets bmin, bmax, η

1 smax = blogη bmax

bmin
c;

// Begin HB outerloop
2 for s ∈ {smax, smax − 1, ..., 0} do
3 N = d smax+1

s+1
· ηse;

4 sample N configurations C = {c1, c2, ..., cN};
// Initial budget for SH

5 b = η−s · bmax;
// Start SH innerloop

6 while b ≤ bmax do
// Evaluate all configurations in C

for the given budget

7 L = {f̃(c, b)|c ∈ C};
// Keep only the best b|C/η|c ones

8 C = top k(C,L, b|C/η|c);
// Increase budget by a factor of η

9 b = η · b;
10 end
11 end

6. More details on BOHB
BOHB [1] combines Bayesian Optimization (BO) and

Hyperband (HB) [6] in order to exhibit strong anytime and
final performance. BOHB follows the same strategy as
HB to allocate resources to configurations calling the Suc-
cessiveHalving (SH) [4] subroutine repeatedly on its inner
loop. Refer to Algorithm 1 for a pseudo-code for Hyper-
band.

On the outerloop HB samples uniformly N random con-
figurations from the hyperparameter search space (lines 3-
4). Afterwards, SH evaluates these N configurations (line
7) on the smallest available budget for this outerloop itera-
tion (line 5) and advances the best 1/η performing config-
urations (line 8) to evaluate on a higher budget (increased
by a factor of η; line 9). This process goes on until the
maximum available budget is reached (line 6). As an exam-
ple, suppose SH starts with a maximum N = 27 number of
sampled hyperparameter configurations for training a neu-
ral network with a minimum budget of bmin = 1 epoch
(first SH innerloop in Figure 4). With an η = 3 the next
iteration of SH would start the best N/η = 9 configura-
tions evaluated on some validation set with the second bud-
get η · bmin = 3 epochs. This will continue until only one
configuration is evaluated for bmax = 27 epochs.

In order to account for the very aggressive evaluations
with many configurations on the smallest budget (as done in
the first SH innerloop), HB resets SH to start with a smaller
degree of aggressiveness, i.e. evaluating the new sampled
configurations on a larger initial budget (lines 3-5 in Al-
gorithm 1; illustrated in the second innerloop of Figure 4).
Nevertheless, the number of configurations N sampled in
every HB outerloop iteration (line 3 in Algorithm 1) is cho-
sen such that the same total budget is assigned to each SH

Configurations: 27
Budget: 1

Configurations: 9
Budget: 3

Configurations: 3
Budget: 9

Configurations: 1
Budget: 27

Configurations: 9
Budget: 3

Configurations: 3
Budget: 9

Configurations: 1
Budget: 27

Configurations: 6
Budget: 9

Configurations: 2
Budget: 27

Configurations: 4
Budget: 27

Outer Loop

Figure 4: Hyperband inner and outer loops. Hyperband
runs SuccessiveHalving on its inner loop with a initial bud-
get and number of starting configurations determined on its
outer loop such that the total budget in every Successive-
Halving run is the same.

run.
Even though BOHB relies on HB to balance the number

of configurations it evaluates and the resources assigned to
each configuration, it replaces the random sampling in line
3 of Algorithm 1 by a model-based sampling, where the
model is build by the configurations evaluated so far. The
strong final performance of BOHB arises from the model-
based guided search, which effectively focuses more atten-
tion to regions in space where good configurations lie.

7. Hyperparameter importance

In order to assess the importance of hyperparameters
over the whole search space we analyze our BOHB re-
sults using functional analysis of variance (fANOVA; [2]).
This method allows us to quantify how much of the per-
formance variance in the configuration space is explained
by single hyperparameters, by marginalizing performances
over all possible values that other hyperparameters could
have taken. These estimates stem from a random forest
model fit on all configurations evaluated on specific budgets
during the BOHB optimization procedure.

For the hyperparameter optimization conducted on the
FlyingThings3D dataset we observe from Figure 5 that the
learning rate remains much more important than the weight
decay across the first two budgets (16k and 50k iterations).
For the highest budget of 150k iterations, the importance of
the weight decay hyperparameter becomes larger, however
it is still dominated by the learning rate. Notice the opti-
mal value that BOHB determines for each hyperparameter
in our space (gray dashed line in Figure 5). Interestingly, for
smaller budgets (i.e. less training iterations) AutoDispNet-
C models trained with a small learning rate and high weight
decay value (this has a small importance though) perform
better on average. As the budget increases the a higher
learning rate and a smaller weight decay value are preferred.

We observe similar results when optimizing the learn-

10 5 10 4

base_lr

1.55

1.56

1.57

1.58

1.59

1.60

EP
E

Budget: 16k iterations
importance 78.6%

10 5 10 4

base_lr

1.540

1.545

1.550

1.555

1.560

1.565

EP
E

Budget: 50k iterations
importance 74.0%

10 5 10 4

base_lr

1.505

1.510

1.515

1.520

1.525

1.530

EP
E

Budget: 150k iterations
importance 59.9%

10 6 10 5 10 4

weight_decay

1.560

1.565

1.570

1.575

1.580

1.585

EP
E

Budget: 16k iterations
importance 10.6%

10 6 10 5 10 4

weight_decay

1.540

1.545

1.550

1.555
EP

E

Budget: 50k iterations
importance 23.4%

10 6 10 5 10 4

weight_decay

1.505

1.510

1.515

1.520

1.525

EP
E

Budget: 150k iterations
importance 38.2%

Figure 5: fANOVA plots for all the budgets we run BOHB on the FlyingThings3D dataset. The solid blue line represents
the estimated mean EPE (+/- 1std shown by red shaded areas) as a function of hyperparameters as modelled by the random
forest we fit to the observations. The importance on top of each plot indicates the fraction of the total variance explained by
the individual choice, while the dashed gray line the optimal value as determined by BOHB.

10 5

base_lr

1.04

1.06

1.08

1.10

EP
E

Budget: 10k iterations
importance 80.2%

10 5

base_lr

0.96

0.98

1.00

1.02

1.04

1.06

EP
E

Budget: 30k iterations
importance 67.5%

10 5

base_lr

0.94

0.96

0.98

1.00

1.02

EP
E

Budget: 90k iterations
importance 60.0%

10 6 10 5 10 4

weight_decay

1.05

1.06

1.07

EP
E

Budget: 10k iterations
importance 15.7%

10 6 10 5 10 4

weight_decay

0.98

1.00

1.02

EP
E

Budget: 30k iterations
importance 22.9%

10 6 10 5 10 4

weight_decay

0.93
0.94
0.95
0.96
0.97
0.98
0.99

EP
E

Budget: 90k iterations
importance 35.9%

Figure 6: fANOVA plots for all the budgets we run BOHB on the KITTI dataset. The solid blue line represents the estimated
mean EPE (+/- 1std shown by red shaded areas) as a function of hyperparameters as modelled by the random forest we fit to
the observations. The importance on top of each plot indicates the fraction of the total variance explained by the individual
choice, while the dashed gray line the optimal value as determined by BOHB.

ing rate and weight decay for AutoDispNet-C on the KITTI
dataset. From the plots in Figure 6 we can see that the learn-
ing rate has a higher contribution to the total performance
variance throughout all budgets compared to weight decay.
However, the optimal values for these two hyperparameters,
as determined by BOHB, remain unchanged across these
budgets.

References
[1] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Ro-

bust and efficient hyperparameter optimization at scale. In
Jennifer Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research, pages
1437–1446, Stockholmsmässan, Stockholm Sweden, 10–15
Jul 2018. PMLR. 3

[2] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An ef-
ficient approach for assessing hyperparameter importance. In
Eric P. Xing and Tony Jebara, editors, Proceedings of the 31st
International Conference on Machine Learning, volume 32 of
Proceedings of Machine Learning Research, pages 754–762,
Bejing, China, 22–24 Jun 2014. PMLR. 3

[3] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,
Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evo-
lution of optical flow estimation with deep networks. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017. 1

[4] Kevin Jamieson and Ameet Talwalkar. Non-stochastic best
arm identification and hyperparameter optimization. In Arthur
Gretton and Christian C. Robert, editors, Proceedings of the
19th International Conference on Artificial Intelligence and
Statistics, volume 51 of Proceedings of Machine Learning
Research, pages 240–248, Cadiz, Spain, 09–11 May 2016.
PMLR. 3

[5] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Fed-
erico Tombari, and Nassir Navab. Deeper depth prediction
with fully convolutional residual networks. In 3D Vision
(3DV), pages 239–248, 2016. 2

[6] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimiza-
tion. Journal of Machine Learning Research, 18:1–52, 04
2018. 3

[7] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In International Confer-
ence on Learning Representations, 2019. 1

