
Semi-supervised Domain Adaptation via Minimax Entropy Supplementary Material

1. Datasets
First, we show the examples of datasets we employ in the

experiments in Fig 1. We also attach a list of classes used
in our experiments on DomainNet with this material.

2. Implementation Detail
We provide details of our implementation. We will pub-

lish our implementation upon acceptance. The reported
performance in the main paper is obtained by one-time
training. In this material, we also report both average and
variance on multiple runs and results on different dataset
splits (i.e., different train/val split).

Implementation of MME. For VGG and AlexNet, we
replace the last linear layer with randomly initialized linear
layer. With regard to ResNet34, we remove the last lin-
ear layer and add two fully-connected layers following [6].
We use the momentum optimizer where the initial learn-
ing rate is set 0.01 for all fully-connected layers whereas
it is set 0.001 for other layers including convolution lay-
ers and batch-normalization layers. We employ learning
rate annealing strategy proposed in [4]. Each mini-batch
consists of labeled source, labeled target and unlabeled tar-
get images. Labeled examples and unlabeled examples are
separately forwarded. We sample s labeled source and la-
beled target images and 2s unlabeled target images. s is
set to be 32 for AlexNet, but 24 for VGG and ResNet due
to GPU memory contraints. We use horizontal-flipping and
random-cropping based data augmentation for all training
images.

2.1. Baseline Implementation

Except for CDAN, we implemented all baselines by our-
selves. S+T [3]. This approach only uses labeled source and
target examples with the cross-entropy loss for training.

DANN [4]. We train a domain classifier on the output
of the feature extractor. It has three fully-connected layers
with relu activation. The dimension of the hidden layer is
set 512. We use a sigmoid activation only for the final layer.
The domain classifier is trained to distinguish source exam-
ples and unlabeled target examples.

ADR [8]. We put dropout layer with 0.1 dropout rate
after l2-normalization layer. For unlabeled target examples,
we calculate sensitivity loss and trained C to maximize it

whereas trained F to minimize it. We also implemented C
with deeper layers, but could not find improvement.

ENT. The difference from MME is that the entire net-
work is trained to minimize entropy loss for unlabeled ex-
amples in addition to classification loss.

CDAN [6]. We used the official implementation of
CDAN provided in https://github.com/thuml/
CDAN. For brevity, CDAN in our paper denotes CDAN+E
in their paper. We changed their implementation so that the
model is trained with labeled target examples. Similar to
DANN, the domain classifier of CDAN is trained to distin-
guish source examples and unlabeled target examples.

3. Additional Results Analysis

Results on Office-Home and Office. In Table 1 and Ta-
ble 2, we report all results on Office-Home and Office. In
almost all settings, our method outperformed baseline meth-
ods.

Sensitivity to hyper-parameter λ. In Fig. 2, we
show our method’s performance when varying the hyper-
parameter λ which is the trade-off parameter between clas-
sification loss on labeled examples and entropy on unla-
beled target examples. The best validation result is obtained
when λ is 0.1. From the result on validation, we set λ 0.1 in
all experiments.

Changes in accuracy during training. We show the
learning curve during training in Fig 3. Our method gradu-
ally increases the performance whereas others quickly con-
verges.

Comparison with virtual adversarial training. Here,
we present the comparison with general semi-supervised
learning algorithm. We select virtual adversarial training
(VAT) [7] as the baseline because the method is one of the
state-of-the art algorithms on semi-supervised learning and
works well on various settings. The work proposes a loss
called virtual adversarial loss. The loss is defined as the ro-
bustness of the conditional label distribution around each in-
put data point against local perturbation. We add the virtual
adversarial loss for unlabeled target examples in addition
to classification loss. We employ hyper-parameters used in
the original implementation because we could not see im-
provement in changing the parameters. We show the results
in Table 3. We do not observe the effectiveness of VAT in

https://github.com/thuml/CDAN
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Figure 1: Example images in DomainNet, Office-Home, and Office.

Network Method R to C R to P R to A P to R P to C P to A A to P A to C A to R C to R C to A C to P Mean
One-shot

AlexNet

S+T 37.5 63.1 44.8 54.3 31.7 31.5 48.8 31.1 53.3 48.5 33.9 50.8 44.1
DANN 42.5 64.2 45.1 56.4 36.6 32.7 43.5 34.4 51.9 51.0 33.8 49.4 45.1
ADR 37.8 63.5 45.4 53.5 32.5 32.2 49.5 31.8 53.4 49.7 34.2 50.4 44.5
CDAN 36.1 62.3 42.2 52.7 28.0 27.8 48.7 28.0 51.3 41.0 26.8 49.9 41.2
ENT 26.8 65.8 45.8 56.3 23.5 21.9 47.4 22.1 53.4 30.8 18.1 53.6 38.8
MME 42.0 69.6 48.3 58.7 37.8 34.9 52.5 36.4 57.0 54.1 39.5 59.1 49.2

VGG

S+T 39.5 75.3 61.2 71.6 37.0 52.0 63.6 37.5 69.5 64.5 51.4 65.9 57.4
DANN 52.0 75.7 62.7 72.7 45.9 51.3 64.3 44.4 68.9 64.2 52.3 65.3 60.0
ADR 39.7 76.2 60.2 71.8 37.2 51.4 63.9 39.0 68.7 64.8 50.0 65.2 57.4
CDAN 43.3 75.7 60.9 69.6 37.4 44.5 67.7 39.8 64.8 58.7 41.6 66.2 55.8
ENT 23.7 77.5 64.0 74.6 21.3 44.6 66.0 22.4 70.6 62.1 25.1 67.7 51.6
MME 49.1 78.7 65.1 74.4 46.2 56.0 68.6 45.8 72.2 68.0 57.5 71.3 62.7

Three-shot

AlexNet

S+T 44.6 66.7 47.7 57.8 44.4 36.1 57.6 38.8 57.0 54.3 37.5 57.9 50.0
DANN 47.2 66.7 46.6 58.1 44.4 36.1 57.2 39.8 56.6 54.3 38.6 57.9 50.3
ADR 45.0 66.2 46.9 57.3 38.9 36.3 57.5 40.0 57.8 53.4 37.3 57.7 49.5
CDAN 41.8 69.9 43.2 53.6 35.8 32.0 56.3 34.5 53.5 49.3 27.9 56.2 46.2
ENT 44.9 70.4 47.1 60.3 41.2 34.6 60.7 37.8 60.5 58.0 31.8 63.4 50.9
MME 51.2 73.0 50.3 61.6 47.2 40.7 63.9 43.8 61.4 59.9 44.7 64.7 55.2

VGG

S+T 49.6 78.6 63.6 72.7 47.2 55.9 69.4 47.5 73.4 69.7 56.2 70.4 62.9
DANN 56.1 77.9 63.7 73.6 52.4 56.3 69.5 50.0 72.3 68.7 56.4 69.8 63.9
ADR 49.0 78.1 62.8 73.6 47.8 55.8 69.9 49.3 73.3 69.3 56.3 71.4 63.0
CDAN 50.2 80.9 62.1 70.8 45.1 50.3 74.7 46.0 71.4 65.9 52.9 71.2 61.8
ENT 48.3 81.6 65.5 76.6 46.8 56.9 73.0 44.8 75.3 72.9 59.1 77.0 64.8
MME 56.9 82.9 65.7 76.7 53.6 59.2 75.7 54.9 75.3 72.9 61.1 76.3 67.6

Table 1: Results on Office-Home. Our method performs better than baselines in most settings.

SSDA. This could be due to the fact that the method does
not consider the domain-gap between labeled and unlabeled
examples. In order to boost the performance, it should be
better to account for the gap.

Analysis of Batch Normalization. We investigate the
effect of BN and analyze the behavior of entropy minimiza-
tion and our method with ResNet. When training all mod-
els, unlabeled target examples and labeled examples are for-
warded separately. Thus, the BN stats are calculated sep-

arately between unlabeled target and labeled ones. Some
previous work [2, 5] have demonstrated that this operation
can reduce domain-gap. We call this batch strategy as a
“Separate BN”. To analyze the effect of Separate BN, we
compared this with a “Joint BN” where we forwarded unla-
beled and labeled examples at once. BN stats are calculated
jointly and Joint BN will not help to reduce domain-gap.
We compare ours with entropy minimization on both Sepa-
rate BN and Joint BN. Entropy minimization with Joint BN



Network Method W to A D to A
1-shot 3-shot 1-shot 3-shot

AlexNet

S+T 50.4 61.2 50.0 62.4
DANN 57.0 64.4 54.5 65.2
ADR 50.2 61.2 50.9 61.4
CDAN 50.4 60.3 48.5 61.4
ENT 50.7 64.0 50.0 66.2
MME 57.2 67.3 55.8 67.8

VGG

S+T 69.2 73.2 68.2 73.3
DANN 69.3 75.4 70.4 74.6
ADR 69.7 73.3 69.2 74.1
CDAN 65.9 74.4 64.4 71.4
ENT 69.1 75.4 72.1 75.1
MME 73.1 76.3 73.6 77.6

Table 2: Results on Office. Our method outperformed other
baselines in all settings.

performs much worse than Separate BN as shown in Table
4. This results show that entropy minimization does not re-
duce domain-gap by itself. On the other hand, our method
works well even in case of Joint BN. This is because our
training method is designed to reduce domain-gap.

Comparison with SSDA methods [9, 1] Since there
are no recently proposed SSDA methods using deep learn-
ing, we compared with the state-of-the-art unsupervised DA
methods modified for the SSDA task. We also compared
our method with [9] and [1]. We implemented [9] and also
modified it for the SSDA task. To compare with [1], we fol-
low their evaluation protocol and report our and their best
accuracy (see Fig. 3 (c)(f) in [1]). As shown in Table 7, we
outperform these methods with a significant margin.

Results on Multiple Runs. We investigate the stability
of our method and several baselines. Table 6 shows results
averaged accuracy and standard deviation of three runs. The
deviation is not large and we can say that our method is
stable.

Results on Different Splits. We investigate the stability
of our method for labeled target examples. Table 5 shows
results on different splits. sp0 correponds to the split we use
in the experiment on our paper. For each split, we randomly
picked up labeled training examples and validation exam-
ples. Our method consistently performs better than other
methods.

Method R to C R to P P to C C to P C to S S to P R-S P to R
S+T 47.1 45.0 44.9 35.9 36.4 38.4 33.3 58.7
VAT 46.1 43.8 44.3 35.8 35.6 38.2 31.8 57.7
MME 55.6 49.0 51.7 40.2 39.4 43.0 37.9 60.7

Table 3: Comparison with VAT [7] using AlexNet on Do-
mainNet. VAT does not perform bettern than S+T

Method Joint BN Separate BN
ENT 63.6 68.9
MME 69.5 69.6

Table 4: Ablation study of batch-normalization. The per-
formance of the ENT method highly depends on the choice
of BN while our method shows consistent behavior.

Method 1-shot 3-shot
sp0 sp1 sp2 sp0 sp1 sp2

S+T 43.3 43.8 43.8 47.1 45.9 48.8
DANN 43.3 44.0 45.4 46.1 43.1 45.3
ENT 37.0 32.9 38.2 45.5 45.4 47.8
MME 48.9 51.2 51.4 55.6 55.0 55.8

Table 5: Results on different training splits on DomainNet,
Real to Clipart adaptation scenario using AlexNet.

Method 1-shot 3-shot
CDAN 62.9±1.5 65.3±0.1
ENT 59.5±1.5 63.6±1.3
MME 64.3±0.8 66.8±0.4

Table 6: Results on three runs on DomainNet, Sketch to
Painting adaptation scenario using ResNet.

AlexNet R to C AlexNet D to A W to A
1-shot 3-shot 1-shot 1-shot

DIRT-T [9] 45.2 48.0 GDSDA [1] 51.5 48.3
MME 48.9 55.6 MME 58.5 60.4

Table 7: Comparison with [9, 1].

Figure 2: Sensitivity to hyper-parameter λ. The result is
obtained when we use AlexNet on DomainNet, Real to Cli-
part.
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Ricci, and Samuel Rota Bulò. Autodial: Automatic domain



(a) Test accuracy (b) Validation accuracy
Figure 3: Test and validation accuracy over iterations. Our
method increases performances over iterations while others
quickly converges. The result is obtained on Real to Clipart
adaptation of DomainNet using AlexNet.

alignment layers. In ICCV, 2017. 2
[3] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank

Wang, and Jia-Bin Huang. A closer look at few-shot classifi-
cation. arXiv, 2018. 1

[4] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In ICML, 2014. 1

[5] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xi-
aodi Hou. Revisiting batch normalization for practical domain
adaptation. arXiv, 2016. 2

[6] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I
Jordan. Conditional adversarial domain adaptation. In NIPS,
2018. 1

[7] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken
Nakae, and Shin Ishii. Distributional smoothing with virtual
adversarial training. arXiv, 2015. 1, 3

[8] Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, and Kate
Saenko. Adversarial dropout regularization. In ICLR, 2018. 1

[9] Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon. A
dirt-t approach to unsupervised domain adaptation. In ICLR,
2018. 3


