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1. Implementation Details

Simple 2D case The generator architecture is a sequence of four layers of fc (fully-connected)-ReLU , where the
input is 2D points from a normal distribution. All hidden layers dimension is 512. The discriminator architecture
is identical to the generator except in the last layer where the output is only a single scalar (real or fake). The
feedback module is fc−ReLU − fc, with hidden layer dimension of 512. It is fed from the activation map of the
first discriminator ReLU , and corrects the input activations of last fc layer in the generator. Since the generator
has no batch-normalization, we refrain from using it. As a result we use α = 1 at test-time.

The model is trained with WGAN-GP [3] adversarial loss, with λ = 0.1 and five critic (discriminator) training
iterations per one for the generator.

Image generation on CIFAR-10 As mentioned previously, we adopt the same training scheme, objectives and
parameters of each used method. In all the methods, we attached a single feedback module of conv−BN−ReLU−
conv−BN , where conv is a 3 × 3 convolution layer with the same number of feature maps as the input feature
map coming from the discriminator and padding of one to conserve the spatial dimensions of the features.

Face generation latent space interpolation: Here we choose an arbitrary pair of input vectors and perform a
linear interpolation between them (in input space), we feed every interpolation step to the network and observe
how our AFL improves the final generation results, see Figure 1.

Super-resolution We used the official model of ESRGAN [6] with a generator of 23 Residual-in-Residual Dense
Block (RRDB) and kept the same training scheme & parameters. In order to improve the baseline results, we used
the pre-trained generator and discriminator provided by the authors, to which we added four dual-input feedback
modules. Each feedback module is conv−ReLU−conv−ReLU−conv, where conv is a 3 × 3 convolutional
layer. Note that we do not add a ReLU activation on after the last layer, in order to allow propagation of negative
correcting values. Table 1 describes how each feedback module is connected. Specifically, its inputs & target
feature maps, and which up-scale is performed on the input channel of the module. Note that we adopted the same
up-scale module used in the generator, which is a nearest-neighbor (NN) upscale followed by a conv layer.
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Figure 1: Latent space interpolation: Results of interpolation between two different input vectors. We compare
DCGAN [5] baseline (odd rows) with ours, DCGAN+AFL (even rows).



feedback module index Input A (in D) Up-scale (for A) Input B & Target (in G)

1 output of 9th conv layer ×4 input of 13th RRDB
2 output of 8th conv layer ×4 input of 21st RRDB
3 output of 7th conv layer ×2 input of ×4 upscale layer
4 output of 5th conv layer ×4 output of ×4 upscale layer

Table 1: Inputs and output of each feedback module. We denote the inputs of the feedback module by A and B.

Figure 2: Iteration impact: Inception score of our method with WGAN-GP [7] network on CIFAR10 dataset.
Feedback loop continues to improve the quality with more iterations, however, most of the benefit of the feedback
iteration are achieved from single feedback iteration.

2. Additional Results

Iterations impact In all of our experiments we trained the feedback modules for single iteration, and reported
the evaluation results of single feedback loop iteration as well. To show the result of network with higher feedback
iterations, we chose the WGAN-GP [7] based network with our feedback modules that are used in CIFAR10
experiment. Figure 2 shows the Inception score achieved when we use higher iterations in test time. Results
show that feedback loop continues to improve the quality with more iterations, however, most of the benefit of the
feedback iteration are achieved from single feedback iteration.

LSUN In the task of unsupervised image generation, we performed additional experiment on the LSUN [8]
bedrooms 64 × 64 dataset. In this experiment we chose the same baseline network [5] that was used for CelebA
dataset, with the same set of feedback modules. As evaluation method we used the FID measure. Results show
that when fused with our feedback modules, the network FID score was improved from 27.6 to 13.

CelebA More results of our method compared with the baseline [5] exist in Figure 3. Additional results of the
feedback switching pipeline, where we replace the input of the discriminator with a reference image, are shown
in Figures 4, 5 and 6. Note that we do not present results with higher α values, as the images do not continue to
change notably.

We show the comparison between our method versus a simple image interpolation between the network output



and the reference image in Figure 7, the results show that simple interpolation between the reference image and
the network output achieves inferior results compared to our proposed pipeline, e.g. the faces are blended and
blurry. In fact, one can think of the proposed method as an interpolation in latent space rather than image space.

Super-resolution Additional results of the contribution of AFL in the super-resolution task are presented in
Figures 9, 10, 11, 12 and 13 for images from PIRM challenge [2] data-set. In addition, an interesting result is
shown in Figure 8, where stripes are corrected to the true direction and merged more naturally.

We performed evaluation of our method on more datasets: Set5 [1],Set14 [9] and BSD100 [4], see Table 2 that
summarizes the evaluation results in terms of PI [2] and RMSE. Note that after adding the feedback modules, an
evident improvement in the perceptual quality is seen through lower PI.

Dataset PI[2] RMSE
baseline [6] +AFL baseline [6] +AFL

Set5[1] 3.792 3.497 8.11 8.3
Set14[9] 2.916 2.852 15.04 14.43
BSD100[4] 2.483 2.357 16.38 15.95

Table 2: Super resolution performance on more datasets, after adding the feedback modules, an evident improve-
ment in the perceptual quality is seen through lower PI.



Figure 3: Full batch results. We compare DCGAN [5] baseline (odd rows) with ours, DCGAN+AFL (even rows).



generated samples for different α values reference
0.0[5] 0.1 0.2 0.3 0.4 0.5

0.0[5] 0.1 0.2 0.3 0.4 0.5

0.0[5] 0.1 0.2 0.3 0.4 0.5

Figure 4: Generation with reference: More Results of using the feedback-switching-pipeline



generated samples for different α values reference
0.0[5] 0.1 0.2 0.3 0.4 0.5

0.0[5] 0.1 0.2 0.3 0.4 0.5

Figure 5: Generation with reference: More Results of using the feedback-switching-pipeline



generated samples for different α values reference
0.0[5] 0.1 0.2 0.3 0.4 0.5

Figure 6: Generation with reference: More Results of using the feedback-switching-pipeline



Generated samples for different α values Reference

0.0[5] 0.1 0.2 0.3 0.4 0.5

Figure 7: Generation with reference vs Interpolation: Results of using the feedback-switching-pipeline vs
simple interpolation. First column is DCGAN [5] baseline. Odd rows: ours, even rows: image interpolation with
reference. Our method produces much higher quality images compared to simple interpolation
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Figure 8: Green patch: stripes corrected to the true direction through feedback iterations, red patch: stripes are
merged together more naturally
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Figure 9: Additional result of super-resolution task
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Figure 10: Additional result of super-resolution task
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Figure 11: Additional result of super-resolution task
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Figure 12: Additional result of super-resolution task
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Figure 13: Additional result of super-resolution task
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