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Here we present the additional implementation details
for MultiPoseNet and OrdinalNet, qualitative results on
Human3.6[5] and results of other additional experiments.

1. Implementation Details

1.1. Architecture of MultiPoseNet

We follow [7] and employ simple, multilayer fully con-
nected layers of dimensionality 1024 with Rectified Linear
Units(ReLU) [2], Dropout [8], Batch-normalization [4], and
Residual Connections [3] for our MultiPoseNet module.

The Encoder takes an input of size (16*2)( 2D pose J2D
) + (17*3)( 3D pose J3D ) and outputs the mean and co-
variance of q(ẑ|J3D, J2D), which are of size 256 each. The
Encoder first processes the input to a size of 1024 using
FC(1024) − BN − ReLU −Dropout(0.5), followed by
two ResidualBlocks, and finally applies FC(512) to get
the mean and covariance of the posterior. To sample ẑ from
the posterior we use the reparameterization trick from [6].

The Decoder transforms an input of size 256( latent
code z ) + 768( 2D pose embedding ) to an output of size
51( 3D pose Ĵ3D ). Analogous to the Encoder design,
we use FC(768)−BN −ReLU −Dropout(0.5) to get
a 2D pose embedding from J2D, which is then concate-
nated with the sampled latent code vector z and fed to two
ResidualBlocks, and finally we use FC(51) to get the out-
put 3D pose Ĵ3D.

The architecture of each ResidualBlock is FC(1024)−
BN−ReLU−Dropout(0.5)−FC(1024)−BN−ReLU−
Dropout(0.5). Note the numbers in brackets indicate out-
put dimensionality for FC layers and retention probability
for Dropout layers. This architecture performed the best on
the Human3.6 validation set in terms of average error and
sample diversity, across a wide selection of hyperparameter
choices for (1) the number of ResidualBlocks and (2) size
of the latent code z.

1.2. Ordinal Maps

We visualise the Ordinal Maps presented by our Ordinal-
Net in Fig.1.

Figure 1: Predicted ordinal maps for the left elbow for test
sample from Human3.6. The left wrist joint is closer to the
camera than left elbow, and is predicted in OM2,left elbow

map, while other joints greater in depth are predicted in
OM1,left elbow map.

2. Additional Experiments
2.1. Qualitative Results

For qualitative analysis, we show the output of our model
for a diverse set of poses on the Human3.6 test set in Fig.2.
Note that here we synthesize 200 samples and use an Oracle
to pick the best sample. The results indicate that 3D pose es-
timates from our model are quite good, across a wide range
of poses.

2.2. Interpolation in Latent Space

To demonstrate that the manifold learned by the CVAE
is smooth and semantically meaningful, we fix a 2D pose
and interpolate between two randomly sampled noise vec-
tors and show the generated samples in Fig. 3. The inter-
polation shows smooth variation in the generated 3D poses,
while the 2D projection remains largely consistent. It fol-
lows that the CVAE has learnt a meaningful latent space
which encodes only the depth variations in the joints. This
validates our choice of the CVAE as a 2D-3D generative
model that reduces the ambiguity in lifting from 2D-3D.
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Figure 2: Qualitative results on the test set of Human3.6. The visualized 3D pose is the best sample chosen by the Oracle
from a sample set of 200. Please note that for the poses, the azimuth is at an offset of 45◦to the camera for ease of viewing.



Figure 3: Latent space interpolations between two randomly sampled noise vectors z1 and z2 conditioned on the same 2D pose
Ĵ2D. Above - Input Image and the detected 2D pose Ĵ2D. Below, from left to right - Dec(z1, Ĵ2D), Dec((3∗z1+z2)/4, Ĵ2D),
Dec((2 ∗ z1 + 2 ∗ z2)/4, Ĵ2D), Dec((z1 + 3 ∗ z2)/4, Ĵ2D), Dec(z2, Ĵ2D). Mean pose is solid and sample is dashed, with
displacement vector field in between.

2.3. Anatomical Consistency of Generated 3D Poses

A good sampling mechanism for 3D pose estimation
should generate anthropomorphically valid samples with a
high probability. To quantitatively assess this point, we use
the PosePrior model from [1], that uses pose-conditioned
joint-angle constraints to classify a 3D pose as valid/invalid.
We use their publicly available code to compute the percent-
age of samples generated by MultiPoseNet that are anthro-
pomorphically valid. We rank the generated 3D candidate
set using OrdinalScore with both the ground-truth and pre-
dicted ordinals, and plot the valid sample percentage in the
interval [1,x] as x varies from 1 to 100. This is depicted in
Fig. 4.

The plot shows that for the interval [1,100], 90% of the
samples are valid, confirming our intuition that the CVAE
generates valid 3D pose candidates. It also demonstrates
that the ordinal score and anthropomorphic validity are cor-
related.
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